18 research outputs found

    A sulfoglycolytic Entner-Doudoroff pathway in Rhizobium leguminosarum bv. trifolii SRDI565

    Get PDF
    Rhizobia are nitrogen fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria with the soil and rhizosphere. Here we show that free living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ), or the related glycoside SQ-glycerol, using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway resulting in production of sulfolactate (SL) as the major metabolic end-product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter cassette, sulfo-ED enzymes and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a non-specific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.Importance Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the capability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics/metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere

    The Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis

    Get PDF
    The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden-Meyerhof-Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden-Meyerhof-Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the β-anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur

    Defining the molecular architecture, metal dependence, and distribution of metal-dependent class II sulfofructose-1-phosphate aldolases

    No full text
    Sulfoquinovose (SQ or 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for the breakdown of SQ is the sulfoglycolytic Embden-Meyerhof-Parnas (sulfo-EMP) pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is well studied for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures in complex with the substrate SFP and product DHAP reveal a dimer-of-dimers (tetrameric) assembly, and identify the sulfonate binding pocket that defines the substrate specificity of these enzymes, two metal binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfo-EMP gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases occur exclusively within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar

    Dynamic Structural Changes Accompany the Production of 2-Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase

    No full text
    2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS includes sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. On the basis of conserved sequence motifs, we assign SLA reductase to the β-hydroxyacid dehydrogenase (β-HAD) family, making it the first example of a β-HAD enzyme that acts on a sulfonic acid, rather than a carboxylic acid substrate. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as the ternary complex YihU•NADH•DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical β-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the β-HAD family highlights key differences in the overall domain organization and identifies a unique peptide sequence that is predictive of SLA reductase activity.<br /

    Enhanced downregulation of the p75 nerve growth factor receptor by cholesteryl and bis-cholesteryl antisense oligonucleotides

    No full text
    The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases
    corecore