152 research outputs found

    Coexistence of Single and Double-Quantum Vortex Lines

    Full text link
    We discuss the configurations in which singly and doubly quantized vortex lines may coexist in a rotating superfluid. General principles of energy minimization lead to the conclusion that in equilibrium the two vortex species segregate within a cylindrical vortex cluster in two coaxial domains where the singly quantized lines are in the outer annular region. This is confirmed with simulation calculations on discrete vortex lines. Experimentally the coexistence can be studied in rotating superfluid 3^3He-A. With cw NMR techniques we find the radial distribution of the two vortex species to depend on how the cluster is prepared: (i) By cooling through TcT_c in rotation, coexistence in the minimum energy configuration is confirmed. (ii) A glassy agglomerate is formed if one starts with an equilibrium cluster of single-quantum vortex lines and adds to it sequentially double-quantum lines, by increasing the rotation velocity in the superfluid state. This proves that the energy barriers, which separate different cluster configurations, are too high for metastabilities to anneal.Comment: 12 pages, 11 figures; Changed content, 15 pages, 14 figure

    Composite defect extends cosmology - 3He analogy

    Full text link
    Spin-mass vortices have been observed to form in rotating superfluid 3He-B following the absorption of a thermal neutron and a rapid transition from the normal to superfluid state. The spin-mass vortex is a composite defect which consists of a planar soliton (wall) which terminates on a linear core (string). This observation fits well within the framework of a cosmological scenario for defect formation, known as the Kibble-Zurek mechanism. It suggests that in the early Universe analogous cosmological defects might have formed.Comment: RevTeX file, 5 pages, 2 figures, submitted to Phys. Rev. Lett., modified according to referee repor

    Nucleation of vortices by rapid thermal quench

    Full text link
    We show that vortex nucleation in superfluid 3^3He by rapid thermal quench in the presence of superflow is dominated by a transverse instability of the moving normal-superfluid interface. Exact expressions for the instability threshold as a function of supercurrent density and the front velocity are found. The results are verified by numerical solution of the Ginzburg-Landau equation.Comment: 4 Pages, 4 Figure, submitted to Phys. Rev. Let

    ``Cosmological'' scenario for A-B phase transition in superfluid 3He

    Full text link
    At a very rapid superfluid transition in 3^3He, follows after a reaction with single neutron, the creation of topological defects (vortices) has recently been demonstrated in accordance with the Kibble-Zurek scenario for the cosmological analogue. We discuss here the extension of the Kibble-Zurek scenario to the case when alternative symmetries may be broken and different states nucleated independently. We have calculated the nucleation probability of the various states of superfluid 3^3He during a superfluid transition. Our results can explain the transition from supercooled AA phase to the BB phase, triggered by nuclear reaction. The new scenario is an alternative to the well-known ``baked Alaska'' scenario.Comment: RevTex file, 4 pages, 3 figures, submitted to Phys. Rev. Let

    Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence

    Full text link
    The dynamics of quantized vortices in rotating 3^3He-B is investigated in the low density (single-vortex) regime as a function of temperature. An abrupt transition is observed at 0.5Tc0.5 T_{\rm c}. Above this temperature the number of vortex lines remains constant, as they evolve to their equilibrium positions. Below this temperature the number of vortices increases linearly in time until the vortex density has grown sufficiently for turbulence to switch on. On the basis of numerical calculations we suggest a mechanism responsible for vortex formation at low temperatures and identify the mutual friction parameter which governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Defect Formation in Quench-Cooled Superfluid Phase Transition

    Full text link
    We use neutron absorption in rotating 3He-B to heat locally a 10 micrometer-size volume into normal phase. When the heated region cools back in microseconds, vortex lines are formed. We record with NMR the number of lines as a function of superflow velocity and compare to the Kibble-Zurek theory of vortex-loop freeze-out from a random network of defects. The measurements confirm the calculated loop-size distribution and show that also the superfluid state itself forms as a patchwork of competing A and B phase blobs. This explains the A to B transition in supercooled neutron-irradiated 3He-A.Comment: RevTex file, 4 pages, 3 figures, resubmitted to Phys. Rev. Let

    Evidence for Thermally Activated Spontaneous Fluxoid Formation in Superconducting Thin-Film Rings

    Full text link
    We have observed spontaneous fluxoid generation in thin-film rings of the amorphous superconductor Mo3_3Si, cooled through the normal-superconducting transition, as a function of quench rate and externally applied magnetic field, using a variable sample temperature scanning SQUID microscope. Our results can be explained using a model of freezout of thermally activated fluxoids, mediated by the transport of bulk vortices across the ring walls. This mechanism is complementary to a mechanism proposed by Kibble and Zurek, which only relies on causality to produce a freezout of order parameter fluctuations.Comment: 4 pages, 3 figure

    On induced CPT-odd Chern-Simons terms in 3+1 effective action

    Full text link
    This paper was originally designated as Comment to the paper by R. Jackiw and V. Alan Kostelecky (hep-ph/9901358). We provide an example of the fermionic system, the superfluid 3He-A, in which the CPT-odd Chern-Simons terms in the effective action are unambiguously induced by chiral fermions. In this system the Lorentz and gauge invariances both are violated at high energy, but the behavior of the system beyond the cut-off is known. This allows us to construct the CPT-odd action, which combines the conventional 3+1 Chern-Simons term and the mixed axial-gravitational Chern-Simons term discussed in hep-ph/9905460. The influence of Chern-Simons term on the dynamics of the effective gauge field has been experimentally observed in rotating 3He-A.Comment: RevTex, 3 pages, no figures, extended version of Comment to the paper by R. Jackiw and V. Alan Kostelecky (hep-ph/9901358), to appear in JETP Let

    Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A

    Full text link
    We have measured the critical velocity v_c at which 3He-A in a rotating cylinder becomes unstable against the formation of quantized vortex lines with continuous (singularity-free) core structure. We find that v_c is distributed between a maximum and minimum limit, which we ascribe to a dependence on the texture of the orbital angular momentum l(r) in the cylinder. Slow cool down through T_c in rotation yields l(r) textures for which the measured v_c's are in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure
    • …
    corecore