We use neutron absorption in rotating 3He-B to heat locally a 10
micrometer-size volume into normal phase. When the heated region cools back in
microseconds, vortex lines are formed. We record with NMR the number of lines
as a function of superflow velocity and compare to the Kibble-Zurek theory of
vortex-loop freeze-out from a random network of defects. The measurements
confirm the calculated loop-size distribution and show that also the superfluid
state itself forms as a patchwork of competing A and B phase blobs. This
explains the A to B transition in supercooled neutron-irradiated 3He-A.Comment: RevTex file, 4 pages, 3 figures, resubmitted to Phys. Rev. Let