558 research outputs found
Physicians' database searches as a tool for early detection of epidemics.
We analyzed retrospectively the use of Physician Desk Reference Database searches to identify epidemics of tularemia, nephropathy, Pogosta disease, and Lyme disease and compared the searches with mandatory laboratory reports to the National Infectious Diseases Register in Finland during 1995. Continuous recording of such searches may be a tool for early detection of epidemics
``Cosmological'' scenario for A-B phase transition in superfluid 3He
At a very rapid superfluid transition in He, follows after a reaction
with single neutron, the creation of topological defects (vortices) has
recently been demonstrated in accordance with the Kibble-Zurek scenario for the
cosmological analogue. We discuss here the extension of the Kibble-Zurek
scenario to the case when alternative symmetries may be broken and different
states nucleated independently. We have calculated the nucleation probability
of the various states of superfluid He during a superfluid transition. Our
results can explain the transition from supercooled phase to the phase,
triggered by nuclear reaction. The new scenario is an alternative to the
well-known ``baked Alaska'' scenario.Comment: RevTex file, 4 pages, 3 figures, submitted to Phys. Rev. Let
Composite defect extends cosmology - 3He analogy
Spin-mass vortices have been observed to form in rotating superfluid 3He-B
following the absorption of a thermal neutron and a rapid transition from the
normal to superfluid state. The spin-mass vortex is a composite defect which
consists of a planar soliton (wall) which terminates on a linear core (string).
This observation fits well within the framework of a cosmological scenario for
defect formation, known as the Kibble-Zurek mechanism. It suggests that in the
early Universe analogous cosmological defects might have formed.Comment: RevTeX file, 5 pages, 2 figures, submitted to Phys. Rev. Lett.,
modified according to referee repor
Wetting of Superfluid 4He by Liquid 3He
We have investigated optically the spreading of He3 on top of the He4-rich solution in phase-separated helium-mixture films, 20-50 ÎŒm thick. In equilibrium, the He3 layer wets the He4-rich phase completely, but nearly circular or stripelike pools of He3-rich phase are stabilized instead when He4 atoms are condensed to the liquid sample at the rate 10 exp 15-5 Ă 10 exp 15 atoms/cm2s. For the contact angle we obtain about 10 mrad, which suggests a fractional change of the He3 surface tension by a factor of 10 exp â5 from the equilibrium value.Peer reviewe
Defect formation and local gauge invariance
We propose a new mechanism for formation of topological defects in a U(1)
model with a local gauge symmetry. This mechanism leads to definite
predictions, which are qualitatively different from those of the Kibble-Zurek
mechanism of global theories. We confirm these predictions in numerical
simulations, and they can also be tested in superconductor experiments. We
believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and
the equations of motion added. To appear in PRL (http://prl.aps.org/
Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A
We have measured the critical velocity v_c at which 3He-A in a rotating
cylinder becomes unstable against the formation of quantized vortex lines with
continuous (singularity-free) core structure. We find that v_c is distributed
between a maximum and minimum limit, which we ascribe to a dependence on the
texture of the orbital angular momentum l(r) in the cylinder. Slow cool down
through T_c in rotation yields l(r) textures for which the measured v_c's are
in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure
Defect Formation in Quench-Cooled Superfluid Phase Transition
We use neutron absorption in rotating 3He-B to heat locally a 10
micrometer-size volume into normal phase. When the heated region cools back in
microseconds, vortex lines are formed. We record with NMR the number of lines
as a function of superflow velocity and compare to the Kibble-Zurek theory of
vortex-loop freeze-out from a random network of defects. The measurements
confirm the calculated loop-size distribution and show that also the superfluid
state itself forms as a patchwork of competing A and B phase blobs. This
explains the A to B transition in supercooled neutron-irradiated 3He-A.Comment: RevTex file, 4 pages, 3 figures, resubmitted to Phys. Rev. Let
Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence
The dynamics of quantized vortices in rotating He-B is investigated in
the low density (single-vortex) regime as a function of temperature. An abrupt
transition is observed at . Above this temperature the number of
vortex lines remains constant, as they evolve to their equilibrium positions.
Below this temperature the number of vortices increases linearly in time until
the vortex density has grown sufficiently for turbulence to switch on. On the
basis of numerical calculations we suggest a mechanism responsible for vortex
formation at low temperatures and identify the mutual friction parameter which
governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let
Transition to superfluid turbulence governed by an intrinsic parameter
Hydrodynamic flow in both classical and quantum fluids can be either laminar
or turbulent. To describe the latter, vortices in turbulent flow are modelled
with stable vortex filaments. While this is an idealization in classical
fluids, vortices are real topologically stable quantized objects in
superfluids. Thus superfluid turbulence is thought to hold the key to new
understanding on turbulence in general. The fermion superfluid 3He offers
further possibilities owing to a large variation in its hydrodynamic
characteristics over the experimentally accessible temperatures. While studying
the hydrodynamics of the B phase of superfluid 3He, we discovered a sharp
transition at 0.60Tc between two regimes, with regular behaviour at
high-temperatures and turbulence at low-temperatures. Unlike in classical
fluids, this transition is insensitive to velocity and occurs at a temperature
where the dissipative vortex damping drops below a critical limit. This
discovery resolves the conflict between existing high- and low-temperature
measurements in 3He-B: At high temperatures in rotating flow a vortex loop
injected into superflow has been observed to expand monotonically to a single
rectilinear vortex line, while at very low temperatures a tangled network of
quantized vortex lines can be generated in a quiescent bath with a vibrating
wire. The solution of this conflict reveals a new intrinsic criterion for the
existence of superfluid turbulence.Comment: Revtex file; 5 pages, 2 figure
Are there static texture?
We consider harmonic maps from Minkowski space into the three sphere. We are
especially interested in solutions which are asymptotically constant, i.e.
converge to the same value in all directions of spatial infinity. Physical
3-space can then be compactified and can be identified topologically (but not
metrically!) with a three sphere. Therefore, at fixed time, the winding of the
map is defined. We investigate whether static solutions with non-trivial
winding number exist. The answer which we can proof here is only partial: We
show that within a certain family of maps no static solutions with non-zero
winding number exist. We discuss the existing static solutions in our family of
maps. An extension to other maps or a proof that our family of maps is
sufficiently general remains an open problem.Comment: 12 page Latex file, 1 postscript figure, submitted to PR
- âŠ