53 research outputs found

    Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed.</p> <p>Results</p> <p>To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies.</p> <p>Conclusions</p> <p>These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.</p

    The Depolarizing Action of GABA in Cultured Hippocampal Neurons Is Not Due to the Absence of Ketone Bodies

    Get PDF
    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine “developmental switch” mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults

    Medical communication and technology: a video-based process study of the use of decision aids in primary care

    Get PDF
    Background: much of the research on decision-making in health care has focused on consultation outcomes. Less is known about the process by which clinicians and patients come to a treatment decision. This study aimed to quantitatively describe the behaviour shown by doctors and patients during primary care consultations when three types of decision aids were used to promote treatment decision-making in a randomised controlled trial.Methods: a video-based study set in an efficacy trial which compared the use of paper-based guidelines (control) with two forms of computer-based decision aids (implicit and explicit versions of DARTS II). Treatment decision concerned warfarin anti-coagulation to reduce the risk of stroke in older patients with atrial fibrillation. Twenty nine consultations were video-recorded. A ten-minute 'slice' of the consultation was sampled for detailed content analysis using existing interaction analysis protocols for verbal behaviour and ethological techniques for non-verbal behaviour.Results: median consultation times (quartiles) differed significantly depending on the technology used. Paper-based guidelines took 21 (19–26) minutes to work through compared to 31 (16–41) minutes for the implicit tool; and 44 (39–55) minutes for the explicit tool. In the ten minutes immediately preceding the decision point, GPs dominated the conversation, accounting for 64% (58–66%) of all utterances and this trend was similar across all three arms of the trial. Information-giving was the most frequent activity for both GPs and patients, although GPs did this at twice the rate compared to patients and at higher rates in consultations involving computerised decision aids. GPs' language was highly technically focused and just 7% of their conversation was socio-emotional in content; this was half the socio-emotional content shown by patients (15%). However, frequent head nodding and a close mirroring in the direction of eye-gaze suggested that both parties were active participants in the conversationConclusion: irrespective of the arm of the trial, both patients' and GPs' behaviour showed that they were reciprocally engaged in these consultations. However, even in consultations aimed at promoting shared decision-making, GPs' were verbally dominant, and they worked primarily as information providers for patients. In addition, computer-based decision aids significantly prolonged the consultations, particularly the later phases. These data suggest that decision aids may not lead to more 'sharing' in treatment decision-making and that, in their current form, they may take too long to negotiate for use in routine primary car

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    Kypsä usko. Systemaattinen analyysi

    No full text

    Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.

    No full text
    The mechanisms of synaptic transmission in the rat hippocampus at birth are assumed to be fundamentally different from those found in the adult. It has been reported that in the CA3-CA1 pyramidal cells a conversion of "silent" glutamatergic synapses to conductive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses starts gradually after P2. Further, GABA via its depolarizing action seems to give rise to grossly synchronous yet slow calcium oscillations. Therefore, GABA is generally thought to have a purely excitatory rather than an inhibitory role during the first postnatal week. In the present study field potential recordings and gramicidin perforated and whole cell clamp techniques as well as K(+)-selective microelectrodes were used to examine the relative contributions of AMPA and GABA(A) receptors to network activity of CA3-CA1 pyramidal cells in the newborn rat hippocampus. As early as postnatal day (P0-P2), highly coherent spontaneous firing of CA3 pyramidal cells was seen in vitro. Negative-going extracellular spikes confined to periodic bursts (interval 16 +/- 3 s) consisting of 2.9 +/- 0.1 spikes were observed in stratum pyramidale. The spikes were accompanied by AMPA-R-mediated postsynaptic currents (PSCs) in simultaneously recorded pyramidal neurons (7.6 +/- 3.0 unitary currents per burst). In CA1 pyramidal cells synchronous discharging of CA3 circuitry produced a barrage of AMPA currents at &gt;20 Hz frequencies, thus demonstrating a transfer of the fast CA3 network activity to CA1 area. Despite its depolarizing action, GABA(A)-R-mediated transmission appeared to exert inhibition in the CA3 pyramidal cell population. The GABA(A)-R antagonist bicuculline hypersynchronized the output of glutamatergic CA3 circuitry and increased the network-driven excitatory input to the pyramidal neurons, whereas the GABA(A)-R agonist muscimol (100 nM) did the opposite. However, the occurrence of unitary GABA(A)-R currents was increased after muscimol application from 0.66 +/- 0.16 s(-1) to 1.43 +/- 0.29 s(-1). It was concluded that AMPA synapses are critical in the generation of spontaneous high-frequency bursts in CA3 as well as in CA3-CA1 transmission as early as P0-P2 in rat hippocampus. Concurrently, although GABA(A)-R-mediated depolarization may excite hippocampal interneurons, in CA3 pyramidal neurons it can restrain excitatory inputs and limit the size of the activated neuronal population

    Functionally graded HVOF sprayed NiCr-Al<sub>2</sub>O<sub>3</sub> coatings for demanding applications

    No full text
    Functionally graded (FG) coatings were manufactured by High Velocity Oxy-Fuel (HVOF) thermal spraying and tested aiming for the high temperature applications. Single layers were manufactured and their elastic modulus measured by using Impulse Excitation Technique (IET). Obtained data was used for modeling of optimal gradient structure. Dual feeding hose for HVOF gun was developed. Calibration procedure for the concurrent use of two powder feeders was performed. NiCr-Al2O3 coatings with coating thickness of 600 µm and 1000 µm were manufactured and tested. Promising results were obtained from high temperature corrosion tests

    Visible Deflation: Embodiment and Emotion in Interaction

    No full text
    This article identifies one embodied practice for implementing a recognizable action in interaction: what is here called “visible deflation.” This practice appears to embody a negative stance in response to a prior turn: one that is recognizable, and glossable, as “exasperation” in response to a prior turn. A number of instances of the practice captured in family interactions reveal how bodily resources are mobilized and organized with respect to the sequence of talk in which they are embedded; collectively they contribute to ongoing research in three domains: embodiment, the interactive construction of emotion, and family interaction. Data are in American and British English
    corecore