361 research outputs found

    Elliptic flow in nuclear collisions at the Large Hadron Collider

    Full text link
    We use perfect-fluid hydrodynamical model to predict the elliptic flow coefficients in Pb + Pb collisions at the Large Hadron Collider (LHC). The initial state for the hydrodynamical calculation for central A+AA + A collisions is obtained from the perturbative QCD + saturation (EKRT) model. The centrality dependence of the initial state is modeled by the optical Glauber model. We show that the baseline results obtained from the framework are in good agreement with the data from the Relativistic Heavy Ion Collider (RHIC), and show predictions for the pTp_T spectra and elliptic flow of pions in Pb + Pb collisions at the LHC. Also mass and multiplicity effects are discussed.Comment: 11 pages, 10 figure

    Which probes are most useful when undertaking cognitive interviews?

    Get PDF
    This paper reports the use of verbal probes in cognitive interviews (CIs) undertaken to test the usefulness, validity and reliability of survey questions. Through examining the use of probes by three interviewers undertaking interviews as part the piloting of a cross-national crime survey, we examine which of the various types of probes used in CIs produce the most useful information. Other influences on interview quality are examined, including differences between interviewers and respondents themselves. The analyses rely on multi-level modelling and suggest that anticipated, emergent and conditional probes provide the most useful data. Furthermore, age, gender and educational levels appear to have no bearing on the quality of the data generated

    Dynamical freeze-out condition in ultrarelativistic heavy ion collisions

    Full text link
    We determine the decoupling surfaces for the hydrodynamic description of heavy ion collisions at RHIC and LHC by comparing the local hydrodynamic expansion rate with the microscopic pion-pion scattering rate. The pion pTp_T spectra for nuclear collisions at RHIC and LHC are computed by applying the Cooper-Frye procedure on the dynamical-decoupling surfaces, and compared with those obtained from the constant-temperature freeze-out surfaces. Comparison with RHIC data shows that the system indeed decouples when the expansion rate becomes comparable with the pion scattering rate. The dynamical decoupling based on the rates comparison also suggests that the effective decoupling temperature in central heavy ion collisions remains practically unchanged from RHIC to LHC.Comment: 7 pages, 9 figure

    Bremsstrahlung Radiation as Coherent State in Thermal QED

    Get PDF
    Based on fully finite temperature field theory we investigate the radiation probability in the bremsstrahlung process in thermal QED. It turns out that the infrared divergences resulting from the emission and absorption of the real photons are canceled by the virtual photon exchange processes at finite temperature. The full quantum calculation results for soft photons radiation coincide completely with that obtained in the semi-classical approximation. In the framework of Thermofield Dynamics it is shown that the bremsstrahlung radiation in thermal QED is a coherent state, the quasiclassical behavior of the coherent state leads to above coincidence.Comment: 8 pages, 2 figure

    Thermal quark production in ultra-relativistic nuclear collisions

    Full text link
    We calculate thermal production of u, d, s, c and b quarks in ultra-relativistic heavy ion collisions. The following processes are taken into account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark species. We use the thermal quark masses, mi2(T)mi2+(2g2/9)T2m_i^2(T)\simeq m_i^2 + (2g^2/9)T^2, in all the rates. At small mass (mi(T)<2Tm_i(T)<2T), the production is largely dominated by the thermal gluon decay channel. We obtain numerical and analytic solutions of one-dimensional hydrodynamic expansion of an initially pure glue plasma. Our results show that even in a quite optimistic scenario, all quarks are far from chemical equilibrium throughout the expansion. Thermal production of light quarks (u, d and s) is nearly independent of species. Heavy quark (c and b) production is quite independent of the transition temperature and could serve as a very good probe of the initial temperature. Thermal quark production measurements could also be used to determine the gluon damping rate, or equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files); CERN-TH.7038/9

    Heavy Ion Physics at the LHC with the ATLAS Detector

    Get PDF
    The ATLAS detector at CERN will provide a high-resolution longitudinally-segmented calorimeter and precision tracking for the upcoming study of heavy ion collisions at the LHC (sqrt(s_NN)=5520 GeV). The calorimeter covers |eta|<5 with both electromagnetic and hadronic sections, while the inner detector spectrometer covers |eta|<2.5. ATLAS will study a full range of observables necessary to characterize the hot and dense matter formed at the LHC. Global measurements (particle multiplicities, collective flow) will provide access into its thermodynamic and hydrodynamic properties. Measuring complete jets out to 100's of GeV will allow detailed studies of energy loss and its effect on jets. Quarkonia will provide a handle on deconfinement mechanisms. ATLAS will also study the structure of the nucleon and nucleus using forward physics probes and ultraperipheral collisions, both enabled by segmented Zero Degree Calorimeters.Comment: 9 pages, 8 figures, submitted to the Proceedings of Quark Matter 2006, Shanghai, China, November 14-20, 200

    Correlation measurements in high-multiplicity events

    Full text link
    Requirements for correlation measurements in high--multiplicity events are discussed. Attention is focussed on detection of so--called hot spots, two--particle rapidity correlations, two--particle momentum correlations (for quantum interferometry) and higher--order correlations. The signal--to--noise ratio may become large in the high--multiplicity limit, allowing meaningful single--event measurements, only if the correlations are due to collective behavior.Comment: MN 55455, 20 pages, KSUCNR-011-92 and TPI-MINN-92/47-T (revised). Revised to correct typo in equation (30), and to fill in a few steps in calculations. Now published as Phys. Rev. C 47 (1993) 232

    Rapidity Distributions of Dileptons from a Hadronizing Quark-Gluon Plasma

    Get PDF
    It has been predicted that dilepton production may be used as a quark-gluon plasma probe. We calculate the rapidity distributions of thermal dileptons produced by an evolving quark-gluon plasma assuming a longitudinal scaling expansion with initial conditions locally determined from the hadronic rapidity density. These distributions are compared with Drell-Yan production and semileptonic charm decays at invariant mass M=2M = 2, 4, and 6 GeV.Comment: 17 pages (standard LaTeX), 6 figures (available as topdraw files or printed versions upon request), GSI-93-6

    Lepton pairs from thermal mesons

    Full text link
    We study the net dielectron production rates from an ensemble of thermal mesons, using an effective Lagrangian to model their interaction. The coupling between the electromagnetic and the hadronic sectors is done through the vector meson dominance approach. For the first time, a complete set of light mesons is considered. We include contributions from decays of the type V~(PS)~\rightarrow~PS~(V)~+~e+ ee^+~e^-, where V is a vector meson and PS is a pseudoscalar, as well as those from binary reactions PS~+~PS, V~+~V, and V~+~PS~ e+e\rightarrow~e^+e^-. Direct decays of the type V~ e+e\rightarrow~e^+ e^- are included and shown to be important. We find that the dielectron invariant mass spectrum naturally divides in distinct regions: in the low mass domain the decays from vector and pseudoscalar mesons form the dominant contribution. The pion--pion annihilation and direct decays then pick up and form the leading signal in an invariant mass region that includes the ρω\rho - \omega complex and extends up to the ϕ\phi. Above invariant mass M M\ \approx~1~GeV other two-body reactions take over as the prominent mechanisms for lepton pair generation. These facts will have quantitative bearing on the eventual identification of the quark--gluon plasma.Comment: In ReVTeX 3.0, 9 figs. available from above email address. McGill 93/8, TPI-MINN-93/19-

    Non-Perturbative Dilepton Production from a Quark-Gluon Plasma

    Full text link
    The dilepton production rate from the quark-gluon plasma is calculated from the imaginary part of the photon self energy using a quark propagator that contains the gluon condensate. The low mass dilepton rate obtained in this way exhibits interesting structures (peaks and gaps), which might be observable at RHIC and LHC.Comment: 16 pages, REVTEX, 8 PostScript figure
    corecore