46 research outputs found

    HepaRG-Progenitor Cell Derived Hepatocytes Cultured in Bioartificial Livers Are Protected from Healthy- and Acute Liver Failure-Plasma Induced Toxicity

    Get PDF
    Background/Aims: For applicability of cell-based therapies aimed at the treatment of liver failure, such as bioartificial livers (BALs) and hepatocyte transplantation, it is essential that the applied hepatocytes tolerate exposure to the patient plasma. However, plasma from both healthy donors and acute liver failure (ALF) patients is detrimental to hepatocytes and hepatic cell lines, such as HepaRG. We aimed to elucidate the underlying mechanisms of plasma-induced toxicity against HepaRG cells in order to ultimately develop methods to reduce this toxicity and render HepaRG-BAL treatment more effective. Methods: Differentiated HepaRG cells cultured in monolayers and laboratory-scale BALs were exposed to culture medium, healthy human plasma, healthy porcine plasma and ALF porcine plasma. Healthy human plasma was fractionated based on size- and polarity, albumin depleted and heat treated to characterize the toxic fraction. The cells were assessed for viability by total protein content and trypan blue staining. Their hepatic differentiation was assessed on transcript level through qRT-PCR and microarray analysis, and on functional level for Cytochrome P450 3A4 activity and ammonia elimination. Mitochondrial damage was assessed by JC-1 staining and mitochondrial gene transcription. Results: Sixteen hours of healthy human plasma exposure did not affect viability, however, hepatic gene-transcript levels decreased dramatically and dose-dependently within four hours of exposure. These changes were associated with early NF-kB signaling and a shift from mitochondrial energy metabolism towards glycolysis. Healthy human plasma-toxicity was associated with the dose-dependent presence of heat-resistant, albumin-bound and (partly) hydrophobic toxic compound(s). HepaRG cells cultured in BALs were partially protected from plasma-toxicity, which was mainly attributable to medium perfusion and/or 3D configuration applied during BAL culturing. The detrimental human plasma effects were reversible in BAL-cultured cells. Porcine ALF-plasma elicited mitotoxicity additional to the basal detrimental effect of porcine healthy plasma, which were only partially reversible. Conclusion: A specific fraction of human plasma reduces hepatic differentiation of HepaRG cultures, in association with early NF-κB activation. In addition, ALF-plasma elicits mitotoxic effects. These findings allow for a targeted approach in preventing plasma-induced cell damage

    Long-term culture of genome-stable bipotent stem cells from adult human liver.

    Get PDF
    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy.This work was supported by grants to MH (EU/236954) and to HC (The United European Gastroenterology Federation (UEGF) Research Prize 2010, EU/232814-StemCellMark and NWO/116002008). MH is supported by The Wellcome Trust Sir Henry Dale fellowship. The Rspo cell line was kindly provided by Dr. Calvin Kuo.This is the final published version. It first appeared at http://www.cell.com/abstract/S0092-8674%2814%2901566-9

    Liver Progenitor Cell Line HepaRG Differentiated in a Bioartificial Liver Effectively Supplies Liver Support to Rats with Acute Liver Failure

    Get PDF
    A major roadblock to the application of bioartificial livers is the need for a human liver cell line that displays a high and broad level of hepatic functionality. The human bipotent liver progenitor cell line HepaRG is a promising candidate in this respect, for its potential to differentiate into hepatocytes and bile duct cells. Metabolism and synthesis of HepaRG monolayer cultures is relatively high and their drug metabolism can be enhanced upon treatment with 2% dimethyl sulfoxide (DMSO). However, their potential for bioartificial liver application has not been assessed so far. Therefore, HepaRG cells were cultured in the Academic Medical Center bioartificial liver (AMC-BAL) with and without DMSO and assessed for their hepatic functionality in vitro and in a rat model of acute liver failure. HepaRG-AMC-BALs cultured without DMSO eliminated ammonia and lactate, and produced apolipoprotein A-1 at rates comparable to freshly isolated hepatocytes. Cytochrome P450 3A4 transcript levels and activity were high with 88% and 37%, respectively, of the level of hepatocytes. DMSO treatment of HepaRG-AMC-BALs reduced the cell population and the abovementioned functions drastically. Therefore, solely HepaRG-AMC-BALs cultured without DMSO were tested for efficacy in rats with acute liver failure (n = 6). HepaRG-AMC-BAL treatment increased survival time of acute liver failure rats ∼50% compared to acellular-BAL treatment. Moreover, HepaRG-AMC-BAL treatment decreased the progression of hepatic encephalopathy, kidney failure, and ammonia accumulation. These results demonstrate that the HepaRG-AMC-BAL is a promising bioartificial liver for clinical application

    Long-term culture of genome-stable bipotent stem cells from adult human liver

    Get PDF
    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy

    Degradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteria

    No full text
    Out of seven chlorinated aliphatic hydrocarbons tested, only trans-1,2-dichloroethene was relatively non-toxic for a mixed methanotrophic culture. The compound was degraded at a rate of 0.4 µmol/mg protein, h-1 and liberation of inorganic chloride was observed. Trans-2,3-dichlorooxirane was formed as an intermediate which was converted further only by chemical transformation with a half life of 31 h. From the consortium, a pure culture was isolated and found to be capable of degradation of trans-1,2-dichloroethene when grown in the presence of methane or methanol. The ability of cometabolic degradation of this compound was not specific for this isolate, since Methylomonas methanica NCIB11130 and Methylosinus trichosporium OB3b also showed degradation of trans-1,2-dichloroethene when grown with methane as sole carbon source.

    Bioartificial livers in vitro and in vivo: tailoring biocomponents to the expanding variety of applications

    No full text
    Bioartificial livers (BALs) were originally developed to treat patients suffering from severe liver failure and relied on primary hepatocytes or on hepatoblastoma-derived cell lines. Currently, new in vitro BAL applications are emerging, including drug toxicity testing, disease modeling and basic clinical research, and in recent years, advances in the field of stem cell biology have resulted in potential alternative cell sources. This review identifies the demands of clinical and in vitro BAL applications to their biocomponent and summarizes the functionality and developmental state of BAL technology and cell types currently available. Relevant studies identified by searching the MEDLINE database until April 2014 were reviewed, supplemented with some of our own unpublished data. BALs have the potential to meet demands currently left unmet in both clinical and in vitro applications. All the reviewed biocomponents show limitations towards one or more BAL applications. However, the generation of stem cell-derived hepatocyte-like cells is progressing rapidly, so the criteria for patient-specific drug toxicity screening and disease modeling are probably met in the near future. HepaRG cells are the most promising biocomponent for clinical BAL application, based on their proliferative and differentiation capacit

    Human fetal liver cells for regulated ex vivo erythropoietin gene therapy

    No full text
    Possible risks and lack of donor livers limit application of liver transplantation. Liver cell transplantation is, at this moment, not a feasible alternative because engraftment in the liver is poor. Furthermore, there is also shortage of cells suitable for transplantation. Fetal liver cells are able to proliferate in cell culture and could therefore present an alternative source of cells for transplantation. In this study, we investigated the utility of human fetal liver cells for therapeutic protein delivery. We transplanted human fetal liver cells in immunodeficient mice but were not able to detect engraftment of human hepatocytes. In contrast, transplantation of human adult hepatocytes led to detectable engraftment of hepatocytes in murine liver. Transplantation of fetal liver cells did lead to abundant reconstitution of murine liver with human endothelium, indicating that endothelial cells are the most promising cell type for ex vivo liver cell gene therapy. Human liver endothelial cells were subsequently transduced with a lentiviral autoregulatory erythropoietin expression vector. After transplantation in immunodeficient mice, these cells mediated long-term regulation of murine hematocrits. Our study shows the potential of human liver endothelial cells for long-term regulated gene therapy

    Optimal Use of 2′,7′-Dichlorofluorescein Diacetate in Cultured Hepatocytes

    No full text
    Oxidative stress is a state that arises when the production of reactive transients overwhelms the cell’s capacity to neutralize the oxidants and radicals. This state often coincides with the pathogenesis and perpetuation of numerous chronic diseases. On the other hand, medical interventions such as radiation therapy and photodynamic therapy generate radicals to selectively damage and kill diseased tissue. As a result, the qualification and quantification of oxidative stress are of great interest to those studying disease mechanisms as well as therapeutic interventions. 2′,7′-Dichlorodihydrofluorescein-diacetate (DCFH2-DA) is one of the most widely used fluorogenic probes for the detection of reactive transients. The nonfluorescent DCFH2-DA crosses the plasma membrane and is deacetylated by cytosolic esterases to 2′,7′-dichlorodihydrofluorescein (DCFH2). The nonfluorescent DCFH2 is subsequently oxidized by reactive transients to form the fluorescent 2′,7′-dichlorofluorescein (DCF). The use of DCFH2-DA in hepatocyte-derived cell lines is more challenging because of membrane transport proteins that interfere with probe uptake and retention, among several other reasons. Cancer cells share some of the physiological and biochemical features with hepatocytes, so probe-related technical issues are applicable to cultured malignant cells as well. This study therefore analyzed the in vitro properties of DCFH2-DA in cultured human hepatocytes (HepG2 cells and differentiated and undifferentiated HepaRG cells) to identify methodological and technical features that could impair proper data analysis and interpretation. The main issues that were found and should therefore be accounted for in experimental design include the following: (1) both DCFH2-DA and DCF are taken up rapidly, (2) DCF is poorly retained in the cytosol and exits the cell, (3) the rate of DCFH2 oxidation is cell type-specific, (4) DCF fluorescence intensity is pH-dependent at pH < 7, and (5) the stability of DCFH2-DA in cell culture medium relies on medium composition. Based on the findings, the conditions for the use of DCFH2-DA in hepatocyte cell lines were optimized. Finally, the optimized protocol was reduced to practice and DCFH2-DA was applied to visualize and quantify oxidative stress in real time in HepG2 cells subjected to anoxia/reoxygenation as a source of reactive transients
    corecore