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Abstract
Background/Aims: For applicability of cell-based therapies aimed at the treatment of liver 
failure, such as bioartificial livers (BALs) and hepatocyte transplantation, it is essential that 
the applied hepatocytes tolerate exposure to the patient plasma. However, plasma from both 
healthy donors and acute liver failure (ALF) patients is detrimental to hepatocytes and hepatic 
cell lines, such as HepaRG. We aimed to elucidate the underlying mechanisms of plasma-
induced toxicity against HepaRG cells in order to ultimately develop methods to reduce this 
toxicity and render HepaRG-BAL treatment more effective. Methods: Differentiated HepaRG 
cells cultured in monolayers and laboratory-scale BALs were exposed to culture medium, healthy 
human plasma, healthy porcine plasma and ALF porcine plasma. Healthy human plasma was 
fractionated based on size- and polarity, albumin depleted and heat treated to characterize 
the toxic fraction. The cells were assessed for viability by total protein content and trypan blue 
staining. Their hepatic differentiation was assessed on transcript level through qRT-PCR and 
microarray analysis, and on functional level for Cytochrome P450 3A4 activity and ammonia 
elimination. Mitochondrial damage was assessed by JC-1 staining and mitochondrial gene 
transcription. Results: Sixteen hours of healthy human plasma exposure did not affect viability, 
however, hepatic gene-transcript levels decreased dramatically and dose-dependently within 
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four hours of exposure. These changes were associated with early NF-kB signaling and a shift 
from mitochondrial energy metabolism towards glycolysis. Healthy human plasma-toxicity was 
associated with the dose-dependent presence of heat-resistant, albumin-bound and (partly) 
hydrophobic toxic compound(s). HepaRG cells cultured in BALs were partially protected from 
plasma-toxicity, which was mainly attributable to medium perfusion and/or 3D configuration 
applied during BAL culturing. The detrimental human plasma effects were reversible in BAL-
cultured cells. Porcine ALF-plasma elicited mitotoxicity additional to the basal detrimental 
effect of porcine healthy plasma, which were only partially reversible. Conclusion: A specific 
fraction of human plasma reduces hepatic differentiation of HepaRG cultures, in association 
with early NF-κB activation. In addition, ALF-plasma elicits mitotoxic effects. These findings 
allow for a targeted approach in preventing plasma-induced cell damage.

Introduction

Acute liver failure (ALF) and acute-on-chronic liver failure are syndromes associated 
with substantial mortality, for which there is an unmet need of therapeutic options [1], as 
orthotopic liver transplantation is limited by donor organ shortage. Two types of cell-based 
treatment modalities are under development: Bioartificial Liver (BAL) therapy [2-4] and 
hepatocyte transplantation [5, 6].

The performance of the applied cells in the presence of human plasma is of paramount 
importance, especially in BALs, that are designed as extracorporeal hepatocyte-bioreactors 
perfused with patient plasma through plasmapheresis. Healthy-donor human plasma 
(hplasma) is known to induce intracellular lipid accumulation, stress and a decrease in 
hepatic functionality of primary hepatocytes and hepatic cell lines, through unclarified 
mechanisms [7, 8]. In addition, plasma from liver failure patients contains not only 
detrimental compounds which are normally detoxified by the liver, such as ammonia, bile 
acids, and lactate, but also compounds associated with inflammation and infection, such as 
endogenous damage-associated molecular patterns released from necrotic cells, cytokines 
and chemokines, as well as lipopolysaccharides and other stimulators of innate immune 
response due to bacterial translocation [9-11].

The AMC-BAL is a bioreactor that holds liver cells in 3D-configuration, in a spirally 
wound, non-woven matrix, interwoven with capillaries which supply oxygen-enriched gas 
[12, 13]. Liver cells come in direct contact with patient plasma during treatment. Currently, 
the device is loaded with the human liver progenitor cell line HepaRG [14, 15], and was 
proven efficacious in prolonging survival time of rats with ischemic ALF [4]. Previously, we 
described that healthy- and ALF-rat plasma induced toxicity in HepaRG cells cultured in 
monolayers and in BALs [16, 17].

In this study we show that hplasma has a rapid detrimental effect on hepatic 
differentiation and functionality of HepaRG cells. In order to develop protective strategies, 
we studied the underlying mechanism of plasma-induced toxicity and the toxic fraction of 
hplasma. We further studied whether culture procedures or different culture platforms could 
inhibit or reverse the plasma-induced toxicity. Finally, we assessed whether ALF plasma 
induced additional toxicity compared to plasma of healthy subjects, using pig plasma.

Materials and Methods

Cell culture and plasma exposure procedures
HepaRG cells (Biopredic International) were cultured in supplemented Williams’ E medium without 

dimethyl sulfoxide (DMSO), with 10% fetal bovine serum, as described [14, 18]. Differentiated monolayers 
were acquired after seeding 1:5 in 12-well plates and culturing for 28 days under control conditions, i.e. 
statically under an atmosphere of 5% CO2, 75%N2 and 20% of O2. Monolayers cultured under hyperoxia 
were kept under normoxia until reaching confluence at day 14 and then transferred to 5% CO2, 55%N2 and 
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40% of O2 until day 28.
3D ‘Bal-in-a-dish’ (Baliad) cultures were seeded into 28.2 mm2 pieces of non-woven matrix and kept in 

medium in 12-well plates under control conditions until day fourteen, after which they were transferred to 
an orbital-shaker incubator under normoxia and shaken at 60 rpm until day 28.

Laboratory-scale BALs (9 mL volume) were loaded with 0.6g cryopreserved HepaRG cells and cultured 
for 21 days as described previously [19] before commencing plasma-exposure-experiments.

To test the effect of plasma exposure, culture medium was replaced by undiluted plasma, except for 
the experiment with serial dilutions, for which plasma was diluted with fresh culture medium as indicated. 
As a negative control, cells were kept in fresh culture medium. Plasma exposure times varied between 
experiments, as indicated.

To test whether HepaRG-BAL cultures could recover from plasma-toxicity, plasma was removed from 
the BALs after 16h exposure by a single-pass flush with fresh culture-medium, after which the system was 
filled entirely with fresh culture medium and allowed to recover for 24 hours. Matrix samples for RNA 
isolation were obtained before plasma exposure (control) and immediately after plasma exposure, as 
described previously [20].

Plasma
Healthy human plasma (hplasma) derived from mixed-gender pooled donors (Sera Laboratories 

International Ltd.). Healthy porcine plasma (pplasma) derived from landrace pigs. For porcine ALF plasma 
(pALFplasma), ALF was induced as described [21] in a 31 kg female landrace pig by intravenous administration 
of paracetamol 1.5 g/kg body weight over 12 hours. After 21 hours the animal went into cardiovascular 
failure, and subsequently plasma was acquired by exsanguination. Liver failure was confirmed by 
biochemical analysis (Table 1). All procedures involving animals were conducted in agreement with the 
Animals (Scientific Procedures) Act 1986 under (UK Home Office) Project License 60/4557, and after 
approval by the Roslin Institute’s Animal Welfare and Ethical Review Board.

All plasmas were anticoagulated with Lithium-Heparin, filter-sterilized and supplemented with 
penicillin (100 U/mL) and streptomycin (100 µg/mL) before exposure to HepaRG cells. Standard HepaRG 
medium contains the equivalent concentrations of penicillin and streptomycin.

Plasma fractionation or treatment
To characterize the toxic component in hplasma, we fractioned or treated this plasma with different 

techniques. Fractionation by size was performed by filtering with 100kDa Molecular weight cut-off filters 
(Amicon Ultra-4, Merck), which are specified to retain molecules of over 100kDa, including albumin, which 
we confirmed.

Fractionation by polarity was performed by Bligh and Dyer extraction [22], after which the hydrophobic 
fraction was dried under a stream of nitrogen, resuspended and sonicated in DMSO, which was then diluted 
in culture medium to equal volume as the original plasma sample (final concentration of DMSO was 1%). 
Vehicle control treatment was performed with culture medium that was treated the same way (n=6, 2 
independent experiments).

Albumin depletion was done by concentrating 3mL of plasma with 100kDa Molecular weight cut-off 
filters until 40 uL retentate, which was then resuspended in a 20 mM sodium phosphate binding-buffer 
(pH 7.0), as recommended by manufacturer, and exposed to 7 mL albumin-binding Blue Sepharose 6 Fast 
Flow beats (GE Healthcare) for 3 hours at 4°C and 30 min at room temperature on an orbital shaker at 100 
rpm. Subsequently, the mix was concentrated over 100kDa Molecular weight cut-off filters and the retentate 
was diluted in culture medium to a final volume of 
3 mL. Control plasma was treated with the same 
protocol, except for the exposure to Blue Sepharose 
beats (n=6, 2 independent experiments). Albumin 
was under the level of detection in the albumin-
depleted plasma, as confirmed by the clinical 
chemistry laboratory (data not shown).

Heat treatment of 100% plasma consisted of 
a 45-minutes exposure to 58°C in a block heater 
(n=6, 2 independent experiments).

Table 1. Biochemical profile of pALFplasma. Baseline 
value is before paracetamol administration. 
AST=Aspartate Aminotransferase; Mir-122 = 
MicroRNA-122; FV= clotting factor five activity; 
FIII=clotting factor eight activity. 
 Baseline Time of death 
AST(U/L) 37 243 
Ammonia (uM) 58 316 
Mir-122 (Fold change vs baseline) 1 160 
FV/FVIII (ratio) 1.07 0.13 
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Cell viability assessment
HepaRG monolayer cultures were exposed to hplasma or culture medium for 16 hours, washed 2x 

with PBS and then assessed for toxicity by two methods (n=4, 2 independent experiments). Firstly the 
cultures were incubated with trypan blue 0.4% solution (Sigma) diluted 1:4, after which the cultures were 
immediately assessed for viability by microscopy. Secondly, the total protein content/well was determined 
as described [18].

Function tests
Hepatic function tests were performed as previously described [4]. Briefly, test medium was prepared 

from HepaRG medium supplemented with NH4Cl (1.5 mM), L-lactate (2.5 mM), D-galactose (2.27 mM) and 
testosterone (125 μM). Monolayers and BALs were exposed to 1.5 and 110 mL of test medium respectively 
and samples taken after 0, 6 and 24 hours for monolayers and 0, 30, 60, 120, 240, 480 and 1440 min for 
BALs. Concentrations of ammonia were quantified using the Megazyme Ammonia Assay kit (Megazyme 
International). Cytochrome P450 3A4 (CYP3A4) activity was measured in BALs by the quantification of 
6b-hydroxytestosterone as described [4], and in monolayers using the P450-GloTM CYP3A4 with Luciferin-
IPA assay according to the manufacturer’s instruction (Promega). All metabolic rates were normalized to 
total protein as described [18]. Synthetic properties could not be assessed adequately, due to some retention 
of plasma proteins after plasma exposure.

RNA isolation, qRT-PCR and microarray analysis
Cells in monolayers or representative samples of BAL-matrix were lysed in 600 μL RLT buffer (RNeasy 

minikit, Qiagen) from which RNA was isolated according to manufacturer’s instructions. Transcript levels 
were determined by qRT-PCR using gene-specific reverse transcriptase (RT)-primers and touchdown qPCR 
protocol and normalized to 18S ribosomal RNA, as previously described [23]. Where expressed as % of 
control, the data were normalized to the average of non-treated control cells within each independent 
experiment. For the microarray experiment RNA was isolated after 0, 1, 2, 4 or 8 hours exposure to hplasma 
(n=3 independent ~1cm2 monolayer cultures per group) RNA was biotinylated with the cRNA labeling kit 
(Ambion) and hybridized to Illumina HumanHT-12 v4 arrays (Illumina) after randomization of the samples. 
Scanning was performed on the Illumina iScan (Illumina). Image analysis and extraction of raw expression 
data was performed with Illumina GenomeStudio v2011.1 Gene Expression software with default settings 
(no background subtraction and no normalization). The microarray data were analyzed with Bioconductor 
packages (version 3.0) using the statistical software environment R (version 3.1.3). Raw data normalization 
was performed on the Illumina sample and control probe profiles by normexp-by-control background 
correction, quantile normalization, and log2 transformation using the limma package (version 3.22.7). 
The arrayQualityMetrics package (version 3.22.1) was used to assess that the microarray data was of good 
quality. Probes with a detection P-value > 0.05 (non-expressed) on all arrays (16, 560 of 47, 323 probes) 
were filtered out. Differential expression between time points was assessed using a moderated t-test using 
the linear model framework from the limma package.

Resulting P-values were corrected for multiple testing using the Benjamini-Hochberg false discovery 
rate. Corrected P-values ≤ 0.05 were considered statistically significant. Probes were reannotated using the 
IlluminaHumanv4.db package (version 1.24.0). Gene sets from the hallmark collection and two liver-specific 
gene sets from the C2 collection, HSIAO_LIVER_SPECIFIC_GENES and SU_LIVER [24, 25], were retrieved from 
the Molecular Signatures Database (MSigDB) v5.1 (Entrez Gene ID version). Gene set enrichment analysis 
was performed using CAMERA (limma package) and gene set variation analysis (GSVA) was performed using 
the GSVA package (version 1.14.1). Sample-specific gene set enrichment scores calculated by GSVA were 
clustered using Pearson correlation as distance measure and complete linkage as agglomeration method 
(function hclust). Top-10 upregulated genes were cross-referenced against the Boston University Gilmore 
Lab NF-κB target gene set (http://www.bu.edu/nf-kb/gene-resources/target-genes/).

Mitochondrial membrane potential and mitochondrial abundance
Mitochondrial membrane potential was determined using JC-1 staining. This cationic dye emits green 

fluorescence in the cytosol of the cells (monomeric form) and red fluorescence when aggregates are formed 
(dimeric form) in active mitochondrial membrane [26]. BAL matrix samples (6 mm x 6 mm) were incubated 
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with 0.5 mL 4 µM JC-1 (Invitrogen) for 30 min at 37°C. Simultaneously, the cells were incubated with 1uM 
verapamil (Sigma) to inhibit the efflux of JC-1 through the activity of ATP binding cassette subfamily B 
member 1. Red to green fluorescence (Fλ585/Fλ510) was quantified on a NOVOstar microplate reader 
(BMG Labtech).

The ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nucDNA) was assessed as a measure of 
mitochondrial abundance expressed as the weighted mean. Total DNA was isolated from AMC-BAL matrix 
samples (6 mm x 6 mm) using the QIAamp DNA kit (QIAGEN) according to the manufacturer’s specifications. 
2 nuclear encoded genes, i.e. CCAAT/enhancer binding protein alpha (CEBPa) and N-acetyl transferase 
(NAT), and 2 mitochondrial-encoded genes, i.e. mitochondrial-NADH dehydrogenase subunit1 (MT-ND1) 
and mitochondrial cytochrome c oxidase subunit 3 (MT-CO3) were quantified by qPCR.

Statistical analyses
Data were analyzed and processed for graphical representation in Prism 7.01 (GraphPad). Values are 

expressed as mean ± standard deviation (SD). Student’s t-tests were used when comparing two groups and 
1-way ANOVA when comparing multiple groups. All results were corrected for multiple testing according 
to the Holm-Sidak method. Significance was reached if P<0.05. The data produced in BALs were n=3, 3 
independent experiments, compared to monolayer cultures n=8, 3 independent experiments. Plasma-
treatment experiments were performed as indicated in text.

Results

Healthy-donor human plasma has a rapid, dose-dependent detrimental effect on the 
hepatic differentiation of HepaRG-derived hepatocytes
We determined the effects of hplasma exposure on HepaRG monolayer cultures on 

total protein content, morphology, ammonia elimination rate, CYP3A4 activity and the 
transcript levels of the hepatic genes CYP3A4, hepatic nuclear factor 4 Alpha (HNF4A) and 
arginase 1 (ARG1), which were previously established to be highly responsive to plasma 
exposure [16, 17]. HepaRG monolayers showed a rapid decrease in transcript levels of these 
hepatic genes when exposed to 100% hplasma (Fig. 1A). After 4 hours exposure, HNF4A 
transcript level was decreased to 17±2% of the level in control cultures, while CYP3A4 
and ARG1 transcript levels decreased more gradually to 5±2% and 7±2% respectively 
after 24 hours. Decrease in transcript levels of these genes was accompanied by profound 
morphological changes. The clusters of hepatocyte-like polygonal cells in HepaRG cultures 
disappeared (Fig. 1B) and cell-cell contact was lost after 16 hours exposure to hplasma. 
There was no significant cell death as determined by total protein content (Fig. 1C) or 
trypan blue staining (Fig. 1D). However, rates of ammonia elimination and CYP3A4 activity 
had decreased to 48±21% and 29±7% of levels in control cultures, respectively (Fig. 1E). 
A 16 hours exposure of monolayers to hplasma in escalating concentrations revealed a 
plasma-concentration-dependent decrease of hepatic gene transcript levels of CYP3A4, 
HNF4 and ARG1 (Fig. 1F). The transcript levels of the control (0% hplasma-exposure) group 
were significantly higher (P<0.05) compared to all other groups, with the exception of ARG1 
versus 25% hplasma. The gene transcript levels were also significantly lower after exposure 
to 100% compared to 25% hplasma for all three genes (P<0.05).

Together, these data indicate that hplasma has a rapid and dose-dependent toxic effect 
on the differentiation of HepaRG monolayers, although their viability is still unaffected.

Detrimental plasma fraction is hydrophobic, albumin-bound, and heat-stabile
Next, we determined whether the detrimental effect of hplasma was due to a lack of 

indispensable culture medium components or to the presence of a toxic fraction, by exposing 
monolayers to different fractions of hplasma for 16h and testing the effect on transcript levels 
of ARG1, HNF4A, and CYP3A4. hPlasma filtered through 100kDa molecular weight cut-off 
filters (which also depleted albumin, Mw 67kDa), did not negatively affect transcript levels 
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of ARG1 or HNF4A, while CYP3A4 was even significantly upregulated compared to control 
cultures (Fig. 2A). This supported the presence of a toxic fraction rather than depletion of 
essential culture medium components by 100% plasma incubation.

hPlasma that was albumin-depleted induced a significantly smaller decrease in transcript 
levels of ARG1 (P<0.01) and HNF4A (P<0.001) and an increase in CYP3A4 transcript levels 
(P<0.001) compared to control-treated hplasma (Fig. 2B). Heat treated hplasma (58°C 45 min) 
yielded similar effects as untreated hplasma (Fig. 2C) and finally, the hydrophobic hplasma 
fraction also reduced transcript levels of ARG1 and HNF4A, but not of CYP3A4 (Fig. 2D).

These data show that the cytotoxic effect of hplasma is due to an albumin-bound, heat-
stabile fraction, that is, at least partly, hydrophobic, and not due to a lack of essential culture 
medium factors.

Plasma-induced damage is associated with rapid activation of NF-κB target genes
To investigate the pathways involved in plasma-induced toxicity, we compared the 

whole-genome transcriptomes of HepaRG monolayers exposed to hplasma for different 
durations by microarray analysis. Since loss of hepatic gene transcription commenced within 
eight hours (Fig. 1A), we compared monolayers after 1, 2, 4 and 8 hours of hplasma exposure 
with control monolayers. There were profound and rapid changes in transcriptomes; after 
1, 2, 4 and 8 hours there were 134, 1154, 5548 and 6584 genes differentially expressed, 
respectively, compared to control cultures (Fig. 3A).

Of the top-10 upregulated genes at the different time points versus control cultures (Table 
2), 11 out of 26 unique genes were NF-κB targets (depicted in bold). Gene set enrichment 
analysis on the hallmark collection of the Molecular Signatures Database (MSigDB) v5.1 
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showed that genes regulated by NF-κB in response to TNF were the most upregulated gene 
set after two hours exposure (Fig. 3B-C). Energy metabolism changed drastically, as oxidative 
phosphorylation was strongly downregulated at later time points. In line with the qRT-PCR 
data (Fig. 1A), enrichment analysis of two previously described gene sets of liver-specific 
genes (1: [25] and 2:[24]) showed a profound decrease of hepatic gene transcript levels at 
4 and 8 hours after exposure (Fig. 3B-C). To confirm the activation of NF-κB, we quantified 
gene transcript levels of target genes interleukin 6 (IL6) and interleukin 8 (IL8) after two 
hours exposure to human plasma (Fig. 3D). Both genes were significantly upregulated in the 
plasma-exposed group (1715% and 762% of control respectively).

BAL-culturing protects against plasma-induced deterioration, which may be explained by 
3D configuration and medium perfusion
HepaRG cultures in BALs were less sensitive to hplasma-induced damage compared 

to monolayers. After 16h of exposure, ammonia elimination was significantly decreased in 
monolayer cultures, but not in BAL cultures (Fig. 4A), while CYP3A4 activity was significantly 
decreased in both cultures, although significantly less in BAL cultures than in monolayers 
(2.2-fold versus 3.4-fold reduction) (Fig. 4B). After exposure, transcript levels of ARG1, 
CYP3A4 and HNF4A were declined 6.9-, 5.4- and 4.0-fold, respectively, in monolayer cultures, 
while in BAL cultures CYP3A4 transcript levels were unchanged after plasma exposure and 
ARG1 and HNF4A transcript levels were less reduced, (2.2- and 1.8-fold) (Fig. 4C-E).

Three main differences between the monolayer and BAL culture systems are the level 
of oxygenation (20% vs 40% O2, respectively), the configuration (2D vs 3D, respectively) 
and medium perfusion (absent or present, respectively). To assess which of these factors 

Fig. 2. Toxicity of hplasma fractions. Transcript levels of the hepatic genes ARG1, CYP3A4 and HNF4A in 
differentiated HepaRG monolayers exposed to different fractions of hplasma for 16 hours, expressed as 
a % of the transcript levels in non-exposed cells. A.) Plasma filtered through a molecular weight cut-off 
filter compared to untreated hplasma. B.) Albumin depleted plasma compared to control-treated plasma. 
C.) Heat treated hplasma compared to untreated hplasma. D.) The hydrophobic plasma fraction compared 
to treatment vehicle control.*= P<0.05 versus monolayers exposed to untreated hplasma. &= P<0.05 versus 
monolayers exposed to control-treated hplasma. $= P<0.05 versus monolayers exposed to vehicle-treated 
control.

Figure 2. Toxicity of hplasma fractions
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Fig. 3. Differentially 
expressed genes and gene 
sets. A.) Venn diagram of 
differentially expressed 
(adjusted P<0.05) genes 
of the monolayer cultures 
exposed to hplasma for 
1 to 8 hours compared 
to unexposed cultures. 
B.) Heatmap of the 
sample-specific gene 
set enrichment scores 
calculated by gene set 
variation analysis (GSVA) 
on the hallmark gene 
sets and two previously 
described human liver-
specific gene sets. C.) A 
high detail full-resolution 
version of Fig. 3B. D) IL6 
and IL8 transcript levels 
after 2 hour exposure to 
hplasma or culture medium 
(control). EMT= Epithelial 
to mesenchymal transition. 
Ox. phosphorylation = 
Oxidative phosphorylation 
*= P< 0.05 versus control.
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contribute to the relative resistance to hplasma toxicity in BAL cultures versus monolayer 
cultures, we exposed medium-perfused 3D cultures under ambient normoxia (Baliad cultures) 
and static monolayer cultures under 40% of ambient oxygen to hplasma and compared 
the decrease in transcript levels 
of ARG1, CYP3A4 and HNF4A 
between standard monolayer and 
BAL cultures. The effect of hplasma 
on transcript levels did not differ 
between normoxic or hyperoxic 
monolayers. In Baliad cultures, 
the transcript levels of ARG1 
and CYP3A4, but not of HNF4A, 
were less decreased by hplasma 
exposure compared to monolayer 
cultures. In addition the transcript 
levels of all three tested genes 
were not significantly different 
after hplasma exposure in BAL- and 
Baliad-cultures, indicating that 
medium perfusion and 3D culture 
may be important contributing 
factors to the protective effect of 
BAL-culturing.

Loss of hepatic gene 
transcription is reversible in 
BALs after exposure to healthy 
human plasma
The previous experiments 

were performed with healthy 
human plasma, because of the 
scarcity of human ALF plasma. 

Table 2. Top-10 upregulated genes after different durations of 
hplasma exposure compared to non-exposed controls. Values 
represent fold change versus control cultures. Genes written in 
bold are recognized targets of NF-κB according to the Boston 
university Gilmore Lab NF-κB target gene set.

 

 
  1h exposure 2h exposure 4h exposure 8h exposure 
CCL20 8.6 36.8 26.0 10.6 
CYR61 6.1    
EDN2 8.6    
EGR1 5.7    
EGR2 9.8    
FOS 36.8    
GDF15 6.5    
IL6 8.0 48.5 18.4 11.3 
IL8 6.1 10.6   
KLF10 6.5    
CCL2  26.0   
CCL7  10.6 22.6  
MAFF  13.9   
SERPINB2  18.4 48.5 42.2 
SOCS3  12.1   
TRIB1  11.3   
TUFT1  11.3   
AKAP12   9.8  
IGFBP1   34.3 24.3 
IL1RL1   16.0 8.6 
MMP3   21.1 10.6 
TGFB3   17.1  
TNC   9.8 10.6 
ANGPTL4    11.3 
HMGA1    8.6 
IGFBP3    17.1 

 

 Fig. 4. Effect of culture platform on hplasma 
toxicity. A-B.) Functionality of HepaRG 
monolayer or BALs cultures in culture 
medium (control) or after exposure to 
hplasma for 16h, expressed as a % of 
unexposed cultures in the same culture-
platform: A.) Ammonia elimination, B.) 
CYP3A4 activity. C-E.) Transcript levels of 
hepatic genes in HepaRG cells cultured in 
monolayers under normoxia or hyperoxia, 
in Baliads or in BALs, exposed to hplasma 
for 16h, expressed as a % of unexposed 
cultures in the same culture-platform: C) 
ARG1, D) CYP3A4, E) HNF4A. #= P< 0.05 
versus hplasma-exposed monolayer. *= P< 
0.05 versus monolayer normoxia.$= P< 
0.05 versus unexposed cultures in the same 
culture platform.

Figure 4. Effect of culture platform on hplasma toxicity
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However, when applied clinically, the BAL-system will be exposed to plasma from patients 
suffering from ALF, which has a different composition from healthy plasma. The effects of 
the ALF contribution on plasma toxicity were therefore analyzed by investigating hepatic 
transcript levels of BALs exposed to plasma samples from: healthy pigs (pplasma) and pigs 
with acetaminophen-induced ALF (pALFplasma). As a control for species differences, hplasma-
exposed BALs were also included. After plasma exposure, all BALs were allowed to recover 
in culture medium for 24 hours and transcript levels were again measured to assess the 
reversibility of the plasma-induced toxicity.

HepaRG BALs exposed to hplasma, pplasma and pALFplasma all showed a significant 
decrease in transcript levels of ARG1 and HNF4A (Fig. 5), while only the latter two groups 
showed a decrease in CYP3A4 transcript levels.

The level of recovery from the plasma exposure varied with the origin of the plasma. 
After recovery from hplasma exposure, transcript levels of all three genes were higher 
compared to post-exposure levels, up to or exceeding control levels. After recovery from 
pplasma exposure, only CYP3A4 transcript levels increased significantly, although HNF4A 
transcript levels no longer differed significantly from the pre-exposure levels. After recovery 
from pALFplasma exposure, there was no significant upregulation of any of the three genes 
compared to post-exposure levels, although there was no significant difference anymore 
to pre-exposure level for HNF4A transcripts. Thus, we conclude that the decrease of gene 
transcript levels in BALs after 16 hours plasma exposure is partially reversible, and the 
degree of reversibility varies with the origin of plasma.

Fig. 5. Effect of hplasma, pplasma and pALFplasma on BAL-cultured HepaRG cells and recovery procedure. 
Transcript levels of hepatic genes ARG1, CYP3A4 and HNF4A in BAL-cultured HepaRG cells before exposure 
(control), directly after 16 hours of plasma-exposure and after 24 hours recovery in culture medium, 
expressed as a % of the transcript levels in non-exposed BAL-cultured HepaRG cells. Three types of plasma 
were applied: A) hplasma, B) pplasma, C) pALFplasma. *=P<0.05 versus control. #= P<0.05 versus post-plasma.

Figure 5. Effect of hplasma , pplasma and pALFplasma on BAL-cultured HepaRG cells and 
recovery procedure
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Porcine ALF plasma 
induces additional 
mitochondrial damage 
compared to healthy 
plasma
Since hepatocytes are 

dependent on mitochondrial 
activity for their high energy 
demanding functions, 
and microarray analysis 
indicated a shift in energy 
metabolism from oxidative 
phosphorylation towards 
glycolysis upon plasma 
exposure (Fig. 3B), we 
assessed mitochondrial 
abundance, membrane 
potential and mitochondrial 
gene transcript levels on 
the pplasma and pALFplasma-
exposed BALs.

After exposure to 
pALFplasma, transcript levels 
of the mitochondrially 
encoded genes MT-CYTB and 
MT-ND5 decreased by 3.2- 
and 3.6-fold respectively, 
but after recovery they 
increased 1.9- and 1.7-fold 
respectively compared to control BALs, which were not exposed to any plasma (Fig. 6A-B). 
BALs exposed to pplasma showed no change in transcript levels, suggesting an additional 
mitotoxic effect of the ALF plasma. This was confirmed by JC1-staining on samples of BAL 
matrix after recovery (Fig. 6C), which indicated a significant loss of mitochondrial membrane 
potential for pALFplasma-exposed BALs, but not pplasma-exposed BALs. However, the ratios 
between DNA of the mitochondrial genes MT-CO and MT-ND1 and the nuclear gene CEBPA, 
were unaffected in both groups (Fig. 6D), indicating that the abundance of mitochondria had 
not changed.

These results indicate that pALFplasma, but not pplasma, impairs mitochondrial gene 
transcription, which is reversible after 16h plasma exposure, and that also mitochondrial 
functionality is negatively affected by pALFplasma.

Discussion

It is of paramount importance for BALs and other cell-based therapies that the applied 
cell source is resistant to human blood plasma. In order to improve this resistance it is vital 
to unravel the underlying mechanism. In this study we showed that hplasma did not affect 
viability after 16 hours of exposure, but had a dose-dependent detrimental effect on the 
hepatic functionality and differentiation grade of HepaRG-derived hepatocytes, in close 
association with NF-κB signaling. Cells were partly protected from this basic plasma-induced 
damage when cultured in BALs, and partial restoration of hepatic gene transcription could 
be achieved by a 24-hour regeneration period on standard culture medium after plasma 
exposure. In addition, we found that toxicity can be attributed to an albumin-bound, and 
heat-resistant plasma fraction that is, at least partly, hydrophobic. In hplasma that was filtered 

Fig. 6. Effect of pplasma and pALFplasma and recovery procedure on 
mitochondria of BAL-cultured HepaRG cells. A-B.) Transcript levels of 
mitochondrially encoded genes MT-CYTB and MT-ND5 in BAL-cultured 
HepaRG cells before exposure, directly after 16 hours of plasma-
exposure and after 24 hours recovery in culture medium, expressed 
as a % of the transcript levels in non-exposed BAL-cultured HepaRG 
cells. C.) Membrane potential as determined by JC-1 staining after 
exposure to pplasma, or pALFplasma (geometric mean ± geometric 
SD). D.) Mitochondrial abundance as reflected by the ratio between 
DNA encoding the mitochondrial genes MT-CO or MT-ND1 and DNA 
encoding the nuclear gene CEBPA (geometric mean ± geometric SD). 
*=P<0.05 versus control. #= P<0.05 versus post-plasma.Figure 6. Effect of pplasma and pALFplasma and recovery procedure on mitochondria of BAL-

cultured HepaRG cells.
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or albumin depleted, CYP3A4 transcript levels were found to be increased, which is likely to 
reflect preservation of the detoxification system’s capability to be induced by exposure to 
ligands.

The 3D configuration and/or medium perfusion contribute in a large part to the increased 
plasma-resistance observed in BALs compared to monolayer cultures. This is in accordance 
with a previous report that primary rat hepatocytes are protected from plasma-induced 
toxicity by 3D-culturing [27]. The applied 3D culture platform provides a flexible culture 
surface, which may be essential for maintaining cell-cell contact. Loss of adhesion is one of 
the first events in plasma-induced toxicity, and anchorage proteins, such as E-cadherin and 
the beta1-integrin receptor are known to protect against hepatocyte dedifferentiation and 
apoptosis [28-31]. In addition, matrix rigidity is known to limit hepatocyte differentiation, in 
part through transcription factor HNF4A [32].

pPlasma was more toxic compared to hplasma, and pALFplasma exerted additional 
mitochondrial toxicity, underlining that ALF plasma is a hostile environment for both the 
patient and cell-based medicinal therapies. Due to the scarcity of human ALF plasma there 
was no opportunity to assess the effect of plasma from ALF patients. In this study we used a 
model of paracetamol-induced liver failure which is commonly associated with mitotoxicity 
and disruption of cell tight junctions [33], although also ALF-plasma of other origins has 
been reported to impair mitochondrial activity to varying degrees [31, 34]. However, the 
detrimental effects of ALF-plasma are likely to vary between etiologies, patients and clinical 
status, implicating the necessity of close monitoring of biocomponent functionality during 
therapy. This way, the BAL can be replaced after reaching critical plasma-induced toxicity of 
its biocomponent. Yet, it would be advantageous to inhibit at least the basic plasma-induced 
toxicity caused by toxic components already present in healthy plasma, which likely varies 
to lesser extent between individuals.

Hepatic gene transcript levels started to decline as early as four hours after hplasma 
exposure, preceded by upregulation of pro-inflammatory genes within one hour, which was 
associated with upregulation of the pro-inflammatory NF-κB signaling-pathway. To further 
elucidate the role of NF-κB, we treated HepaRG cells with NF-κB-inhibitors sulfasalazine and 
JSH-23. Unfortunately, these compounds did not effectively inhibit NF-κB activation when 
applied in maximum non-toxic dose (data not shown). A possible explanation is that the 
chemical inhibitors are metabolized by the cells. Therefore, the functionally participation of 
NF-κB in mediating the upregulation of pro-inflammatory genes could not be established.

Yet, NF-κB -associated pro-inflammatory cytokines, such as IL-6, are known to have a 
dedifferentiating effect on primary hepatocytes [35, 36]. Especially for drug-detoxification 
enzymes, it is well documented that pro-inflammatory cytokines, and particularly IL-6, 
downregulate functionality through inhibition of transcription [37, 38]. These mechanisms 
were confirmed in HepaRG cells by others: pro-inflammatory cytokines suppressed 
transcription of phase 1 and phase 2 detoxification enzymes and drug transporters, as well 
as CYP450-enzyme activities [39].

There are several isoforms of NF-κB, with partially overlapping signaling cascades, 
exerting a multitude of effects. Pan-inhibition of NF-κB is known to induce and exacerbate 
hepatocyte apoptosis [40, 41], therefore this is not an attractive strategy to counter plasma 
toxicity. It has been described that the RELA/p65 isoform leads to inflammatory cytokine 
production, posing a more specific target. However, genetic disruption of this pathway is also 
known to sensitize hepatocytes to apoptosis [42, 43].

Ideally, plasma toxicity should be inhibited by targeting more upstream processes. We 
have established that the detrimental compound(s) reside(s) in a hplasma fraction that is 
albumin bound, non-polar and heat resistant. NF-κB can be activated through extracellular 
receptor signaling, such as Toll-Like Receptors, which are classically stimulated by bacterial 
and viral particles, mitochondrial reactive oxygen species (ROS)-production and hypoxia 
[44, 45]. We found that antioxidant treatment of HepaRG cells with N-acetyl cysteine did not 
decrease the detrimental plasma effects (data not shown), indicating that ROS is unlikely to 
be a main contributor to hplasma toxicity [45]. NF-κB activation through hypoxia-induced 
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pathways might be an option, as our microarray data showed that oxidative phosphorylation 
is severely affected. This does not necessarily imply a direct association with hypoxia; 
culturing the HepaRG cells and exposing them to plasma under hyperoxic conditions did not 
yield any protection against plasma toxicity.

In case of direct receptor stimulation, there is the possibility to inhibit plasma toxicity 
by molecular interference. Plasmapheresis filters with high affinity for Toll-like receptor 
2 ligands ameliorated clinical symptoms of ALF in pigs with paracetamol overdose [46]. 
However, for specific targeting, further studies into the nature of the toxic component in 
plasma are required. Specific detoxification modules could easily be integrated into the 
plasmapheresis set-up, potentially protecting both the biocomponent and the native liver. 
A hybrid system, combining BAL-treatment with albumin dialysis may reduce damage of 
plasma to the biocomponent. One study, performed with human ALF plasma, addressed this 
option and showed, however, that albumin dialysis of the plasma did not reduce its pro-
apoptotic effect on hepatocytes [31]. This may indicate that the toxic fraction has a very high 
affinity for albumin, since dialysis only removes the unbound fraction, and compounds with 
high binding affinities are therefore not removed efficiently.

Alternatively, the basic plasma-induced toxicity can be prevented by filtration for 
molecular size; plasma passed through a molecular weight cut-off filter of 100 kDa was 
no longer toxic. A disadvantage of small-pore plasma filters is that the mass-transfer of 
compounds during BAL therapy may be limited, which will decrease its efficacy. Others have 
previously studied the optimal plasmapheresis filter pore size, and concluded that a high-
convection 400 kDa cut-off membrane offers the optimal balance between protection of the 
biocomponent and mass-transfer of toxins [47].

As an alternative strategy, the negative effects of basic plasma on hepatocytes can also 
be reversed by limiting the exposure-time to plasma so that damage to the biocomponent 
is still reversible. Our data show that gene transcription of HepaRG-BAL cultures can be 
restored after 16 hours of hplasma exposure by recirculating culture medium through the 
device, indicating that alternated treatment- and restoration runs are also a viable strategy 
to increase the life-span of BALs, as proposed by others previously [7].

In conclusion, hplasma has a detrimental effect on differentiated HepaRG cultures, which 
is associated with early NF-κB activation. Strategies to extend functional time in BAL set-up 
include intermitted exposure- and recovery runs, the use of small-pore size and/or cytokine 
scavenging plasmapheresis filters and direct inhibition of involved pathways, possibly such 
as NF-κB signaling. ALF plasma may elicit additional toxic effects, which may vary between 
patients. Therefore, close monitoring of the functionality will be required for optimal BAL 
therapy of ALF patients.
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