47 research outputs found

    Endothelial-Derived Extracellular Vesicles Induce Cerebrovascular Dysfunction in Inflammation

    Get PDF
    Blood–brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue

    No full text
    We previously isolated APOL3 (CG12-1) cDNA and now describe the isolation of APOL1 and APOL2 cDNA from an activated endothelial cell cDNA library and show their endothelial-specific expression in human vascular tissue. APOL1-APOL4 are clustered on human chromosome 22q13.1, as a result of tandem gene duplication, and were detected only in primates (humans and African green monkeys) and not in dogs, pigs, or rodents, showing that this gene cluster has arisen recently in evolution. The specific tissue distribution and gene organization suggest that these genes have diverged rapidly after duplication. This has resulted in the emergence of an additional signal peptide encoding exon that ensures secretion of the plasma high-density lipoprotein-associated APOL1 Our results show that the APOL1-APOL4 cluster might contribute to the substantial differences in the lipid metabolism of humans and mice, as dictated by the variable expression of genes involved in this proces

    Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx

    No full text
    Vascular endothelial cells are shielded from direct exposure to flowing blood by the endothelial glycocalyx, a highly hydrated mesh of glycoproteins, sulfated proteoglycans, and associated glycosaminoglycans (GAGs). Recent data indicate that the incorporation of the unsulfated GAG hyaluronan into the endothelial glycocalyx is essential to maintain its permeability barrier properties, and we hypothesized that fluid shear stress is an important stimulus for endothelial hyaluronan synthesis. To evaluate the effect of shear stress on glycocalyx synthesis and the shedding of its GAGs into the supernatant, cultured human umbilical vein endothelial cells (i.e., the stable cell line EC-RF24) were exposed to 10 dyn/cm2 nonpulsatile shear stress for 24 h, and the incorporation of [3H]glucosamine and Na2[35S]O4 into GAGs was determined. Furthermore, the amount of hyaluronan in the glycocalyx and in the supernatant was determined by ELISA. Shear stress did not affect the incorporation of 35S but significantly increased the amount of glucosamine-containing GAGs incorporated in the endothelial glycocalyx [168 (SD 17)% of static levels, P < 0.01] and shedded into the supernatant [231 (SD 41)% of static levels, P < 0.01]. Correspondingly with this finding, shear stress increased the amount of hyaluronan in the glycocalyx [from 26 (SD 24) x 10(-4) to 46 (SD 29) x 10(-4) ng/cell, static vs. shear stress, P < 0.05] and in the supernatant [from 28 (SD 11) x 10(-4) to 55 (SD 16) x 10(-4) ng x cell(-1) x h(-1), static vs. shear stress, P < 0.05]. The increase in the amount of hyaluronan incorporated in the glycocalyx was confirmed by a threefold higher level of hyaluronan binding protein within the glycocalyx of shear stress-stimulated endothelial cells. In conclusion, fluid shear stress stimulates incorporation of hyaluronan in the glycocalyx, which may contribute to its vasculoprotective effects against proinflammatory and pro-atherosclerotic stimul

    SOX-18 controls endothelial-specific claudin-5 gene expression and barrier function

    No full text
    Members of the claudin family constitute tight junction strands and are major determinants in specificity and selectivity of paracellular barriers. Transcriptional control of claudin gene expression is essential to establish individual claudin expression patterns and barrier properties. Using full genome expression profiling, we now identify sex-determining region Y-box (SOX)-18, a member of the SOX family of high-mobility group box transcription factors, as one of the most differentially induced genes during establishment of the endothelial barrier. We show that overexpression of SOX-18 and a dominant-negative mutant thereof, as well as SOX-18 silencing, greatly affect levels of claudin-5 (CLDN5). The relevance of an evolutionary conserved SOX-binding site in the CLDN5 promoter is shown using sequential promoter deletions, as well as point mutations. Furthermore, SOX-18 silencing abrogates endothelial barrier function, as measured by electric cell-substrate impedance sensing. Thus an obligatory role for SOX-18 in the regulation of CLDN5 gene expression in an endothelial-specific and cell density-dependent manner is established, as well as a crucial, nonredundant role for specifically SOX-18 in the formation of the endothelial barrie

    Inventory of 'atherosclerotic genes' induced or repressed in endothelial cells and smooth muscle cells by differential display rt-pcr

    No full text
    Initiation and progression of atherosclerosis requires differential expression of a distinct set of known and novel genes in various cell types, e.g vascular endothelial cells (ECs) and smooth muscle cells (SMCs). We set out to identify genes with a reproducibly altered, time-dependent expression in either cultured human ECs or SMCs, activated by TNF-a or by conditioned medium of oxLDL activated monocytes (CM-MC). An unbiased method (differential display RT-PCR) was employed to make an inventory of differential gene expression. Theoretically, the combinations of 12 anchored primers (5'T,NN) and 12 arbitrary 10-mers displays approximately 80% of a cell's mRNA repertoire. Depending on the abundance of differential transcription, confirmation was done by Northern blotting, RNase protection or by semi-quantitative RT-PCR. Accordingly, we identified 106 TNF-a/CM-MC responsive genes in cultured ECs and 46 genes in SMCs. Strikingly, only 3 known genes (GM-CSF, IL-8, IAP-C) were found to be induced both in ECs and SMCs, illustrating that ECs and SMCs express different genes in response to the same atherogenic stimulus. Probes corresponding to these genes are then employed for in situ hybridization with human specimen, obtained either from major vascular surgery or from donors, representing different stages of the disease. At present, in situ hybridization demonstrated SMC-specific expression in specimen for three novel unknown genes. The in vim mRNA expression pattern markedly differs, suggesting a differential function in early or advanced lesions. Full-length cDNA cloning and, subsequent, functional characterization of the corresponding gene products is in progress

    Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2)

    No full text
    The endothellum expresses a large repertoire of genes under apparent transcriptional control of biomechanical forces, many of which are neither cell-type nor flow specific. We set out to identify genes that are uniquely flow responsive in human vascular endothelial cells. Transcriptional profiling using commercial DNA microarrays identified 12 of 18 000 genes that were modulated at least 5-fold after 24 hours of steady laminar flow (25 dyne/ cm(2)). After a 7-day exposure to unidirectional pulsatile flow (19 +/- 12 dyne/cm(2)), only 3 of 12 remained elevated at least 5-fold. A custom microarray of -300 vascular cell-related gene fragments was constructed, and expression analysis revealed that many flow-induced genes are also induced by at least one of the following agents: tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), transforming growth factor-beta, vascular endothelial growth factor, or thrombin, indicating a more general role in adaptive or stress responses. Most flow-induced genes were also induced by TNF-alpha but not IL-1beta, suggesting the involvement of reactive oxygen species. A limited panel of genes that are unique for flow-exposed cultures was identified, including lung Kruppel-like factor (LKLF/KLF2) and cytochrome P450 1B1 (CYP1B1). In marked contrast, both these genes were substantially repressed by TNF-alpha. LKLF but not CYP1B1 mRNA was detected exclusively in the vascular endothelium of healthy human aorta by in situ hybridization and appeared to-be flow regulated. To date LKLF is the first endothelial transcription factor that is uniquely induced by flow and might therefore be at the molecular basis of the physiological healthy, flow-exposed state of the endothelial cell. (C) 2002 by The American Society of Hematolog
    corecore