48 research outputs found

    A robust broadband fat suppressing phaser T2 preparation module for cardiac magnetic resonance imaging at 3T

    Full text link
    Purpose: Designing a new T2 preparation (T2-Prep) module in order to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat suppression module for T2-weighted imaging at 3T. Methods: The tip-down RF pulse of an adiabatic T2 preparation (T2-Prep) module was replaced by a custom-designed RF excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (now called a phaser adiabatic T2-Prep). Using numerical simulations, in vitro and in vivo ECG-triggered navigator gated acquisitions of the human heart, the blood, myocardium and fat signal-to-noise ratio and right coronary artery (RCA) vessel sharpness using this approach were compared against previously published conventional adiabatic T2-Prep approaches Results: Numerical simulations predicted an increased fat suppression bandwidth and decreased sensitivity against transmit magnetic field inhomogeneities using the proposed approach, while preserving the water T2 preparation capabilities. This was confirmed by the tissue signals acquired on the phantom and the in vivo MRA, which show similar blood and myocardium SNR and CNR and significantly reduced fat SNR compared to the other methods tested. As a result, the RCA conspicuity was significantly increased and the motion artifacts were visually decreased. Conclusion: A novel fat-suppressing T2-preparation method was developed and implemented that demonstrated robust fat suppression and increased vessel sharpness compared with conventional techniques, while preserving its T2 preparation capabilities.Comment: 23 pages, 5 figures, submitted to Magnetic Resonance in Medicin

    Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI:a feasibility study

    Get PDF
    PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted

    Compressed Sensing with Signal Averaging for Improved Sensitivity and Motion Artifact Reduction in Fluorine-19 MRI

    Full text link
    Fluorine-19 (19F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypothesis that a 19F MRI pulse sequence that combines a specific undersampling regime with signal averaging has increased sensitivity and robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing. To this end, numerical simulations and phantom experiments were performed to characterize the point spread function (PSF) of undersampling patterns and the vulnerability to noise of acquisition-reconstruction strategies with paired numbers of x signal averages and acceleration factor x (NAx-AFx). At all investigated noise levels, the DSC of the acquisition-reconstruction strategies strongly depended on the regularization parameters and acceleration factor. In phantoms, motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motions. Differences were assessed with Dice similarity coefficients (DSC), and were consistently higher for NA8-AF8 compared to NA1-AF1 strategy, for both simulated and real cyclic motions (P<0.001). Both acquisition-reconstruction strategies were validated in vivo in mice (n=2) injected with perfluoropolyether. These images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypothesis that in 19F MRI, the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing

    Fast high-resolution metabolite mapping in the rat brain using 1H-FID-MRSI at 14.1T

    Full text link
    Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous non-invasive acquisition of MR spectra from multiple spatial locations inside the brain. While 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical settings, mostly because of difficulties specifically related to very small nominal voxel size in the rodent brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio SNR. In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage and spatial resolution in the rodent brain, and developed a custom dedicated processing pipeline with a graphical user interface: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis-set and in-vivo measured MM, provided reliable fits for the data at acquisition delays of 1.3 and 0.94 ms. The resulting Cram\'er-Rao lower bounds were sufficiently low (<40%) for eight metabolites of interest, leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained between 1 and 2 averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high repeatability over time. We demonstrated that the increased SNR and spectral resolution at 14.1T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 minutes, using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1T provided reproducible and high-quality metabolic mapping of brain metabolites with significantly reduced technical limitations.Comment: Dunja Simicic and Brayan Alves are joint first author
    corecore