51 research outputs found

    Time-Course of Motor Involvement in Literal and Metaphoric Action Sentence Processing: A TMS Study

    Get PDF
    There is evidence that the motor cortex is involved in reading sentences containing an action verb (“The spike was hammered into the ground”) as well as metaphoric sentences (“The army was hammered in the battle”). Verbs such as ‘hammered’ may be homonyms, with separate meanings belonging to the literal action and metaphoric action, or they may be polysemous, with the metaphoric sense grounded in the literal sense. We investigated the time course of the effects of single-pulse transcranial magnetic stimulation to primary motor cortex on literal and metaphoric sentence comprehension. Stimulation 300 ms post-verb presentation impaired comprehension of both literal and metaphoric sentences, supporting a causal role of sensory-motor areas in comprehension. Results suggest that the literal meaning of an action verb remains activated during metaphor comprehension, even after the temporal window of homonym disambiguation. This suggests that such verbs are polysemous, and both senses are related and grounded in motor cortex

    The neural substrates of natural reading: a comparison of normal and nonword text using eyetracking and fMRI

    Get PDF
    Most previous studies investigating the neural correlates of reading have presented text using serial visual presentation (SVP), which may not fully reflect the underlying processes of natural reading. In the present study, eye movements and BOLD data were collected while subjects either read normal paragraphs naturally or moved their eyes through paragraphs of pseudo-text (pronounceable pseudowords or consonant letter strings) in two pseudo-reading conditions. Eye movement data established that subjects were reading and scanning the stimuli normally. A conjunction fMRI analysis across natural- and pseudo-reading showed that a common eye-movement network including frontal eye fields, supplementary eye fields, and intraparietal sulci was activated, consistent with previous studies using simpler eye movement tasks. In addition, natural reading versus pseudo-reading showed different patterns of brain activation: normal reading produced activation in a well-established language network that included superior temporal gyrus/sulcus, middle temporal gyrus, angular gyrus, inferior frontal gyrus, and middle frontal gyrus, whereas pseudo-reading produced activation in an attentional network that included anterior/posterior cingulate and parietal cortex. These results are consistent with results found in previous single-saccade eye movement tasks and SVP reading studies, suggesting that component processes of eye-movement control and language processing observed in past fMRI research generalize to natural reading. The results also suggest that combining eyetracking and fMRI is a suitable method for investigating the component processes of natural reading in fMRI research

    The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults

    Get PDF
    The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior ascending branch adjoining the supramarginal gyrus (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior ascending branch adjoining the angular gyrus (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted

    The neural career of sensory-motor metaphors

    Get PDF
    Abstract The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed than many abstract concepts are understood metaphorically through concrete sensorymotor domains such as actions. Using fMRI, we compared neural responses to literal action (Lit; The daughter grasped the flowers), metaphoric action (Met; The public grasped the idea), and abstract (Abs; The public understood the idea) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior partial lobule (aIPL), an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that aIPL serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations, but relies also on abstract lexical-semantic codes

    Decoding Brain Activity Associated with Literal and Metaphoric Sentence Comprehension Using Distributional Semantic Models

    Get PDF
    Recent years have seen a growing interest within the natural language processing (NLP)community in evaluating the ability of semantic models to capture human meaning representation in the brain. Existing research has mainly focused on applying semantic models to de-code brain activity patterns associated with the meaning of individual words, and, more recently, this approach has been extended to sentences and larger text fragments. Our work is the first to investigate metaphor process-ing in the brain in this context. We evaluate a range of semantic models (word embeddings, compositional, and visual models) in their ability to decode brain activity associated with reading of both literal and metaphoric sentences. Our results suggest that compositional models and word embeddings are able to capture differences in the processing of literal and metaphoric sentences, providing sup-port for the idea that the literal meaning is not fully accessible during familiar metaphor comprehension

    Word frequency effects in naturalistic reading

    No full text

    The Neurobiology of Semantic Memory

    No full text
    Semantic memory includes all acquired knowledge about the world and is the basis for nearly all human activity, yet its neurobiological foundation is only now becoming clear. Recent neuroimaging studies demonstrate two striking results: the participation of modality-specific sensory, motor, and emotion systems in language comprehension, and the existence of large brain regions that participate in comprehension tasks but are not modality-specific. These latter regions, which include the inferior parietal lobe and much of the temporal lobe, lie at convergences of multiple perceptual processing streams. These convergences enable increasingly abstract, supramodal representations of perceptual experience that support a variety of conceptual functions including object recognition, social cognition, language, and the remarkable human capacity to remember the past and imagine the future
    corecore