175 research outputs found

    Seasonal abundance of small cladocerans in Lake Mangakaware, Waikato, New Zealand

    Get PDF
    The seasonal changes in the dynamics and life histories of the Cladocera in Lake Mangakaware, North Island, New Zealand, were studied over 19 months by sampling at weekly or 2-weekly intervals. Lake Mangakaware is a 13.3 ha polymictic lake with high nutrient status, low Secchi disc transparencies, and an unstable thermal regime. The four planktonic cladoceran species (Bosmina longirostris, B. meridionalis, Ceriodaphnia pulchella, and C. dubia) exhibited disjunct population maxima. Only B. longirostris was perennially present. All species exhibited low fecundities and low lipid content, indicating that food resources were limited and that competitive interactions and resistance to starvation were probably important in determining species success. Increases in body size in cooler seasons were unrelated to clutch size, giving further support for the view that available food was limited. These results are consistent with previous experimental findings that subtle differences in life history can determine seasonal success and the outcome of competition between similar species

    Gastrotricha: A Marine Sister for a Freshwater Puzzle

    Get PDF
    Background: Within an evolutionary framework of Gastrotricha Marinellina flagellata and Redudasys fornerise bear special interest, as they are the only Macrodasyida that inhabit freshwater ecosystems. Notwithstanding, these rare animals are poorly known; found only once (Austria and Brazil), they are currently systematised as incertae sedis. Here we report on the rediscovery of Redudasys fornerise, provide an account on morphological novelties and present a hypothesis on its phylogenetic relationship based on molecular data. Methodology/Principal Findings: Specimens were surveyed using DIC microscopy and SEM, and used to obtain the 18 S rRNA gene sequence; molecular data was analyzed cladistically in conjunction with data from 42 additional species belonging to the near complete Macrodasyida taxonomic spectrum. Morphological analysis, while providing new information on taxonomically relevant traits (adhesive tubes, protonephridia and sensorial bristles), failed to detect elements of the male system, thus stressing the parthenogenetic nature of the Brazilian species. Phylogenetic analysis, carried out with ML, MP and Bayesian approaches, yielded topologies with strong nodal support and highly congruent with each other. Among the supported groups is the previously undocumented clade showing the alliance between Redudasys fornerise and Dactylopodola agadasys; other strongly sustained clades include the densely sampled families Thaumastodermatidae and Turbanellidae and most genera. Conclusions/Significance: A reconsideration of the morphological traits of Dactylopodola agadasys in light of the new information on Redudasys fornerise makes the alliance between these two taxa very likely. As a result, we create Anandrodasys gen. nov. to contain members of the previously described D. agadasys and erect Redudasyidae fam. nov. to reflect this novel relationship between Anandrodasys and Redudasys. From an ecological perspective, the derived position of Redudasys, which is deeply nested within the Macrodasyida clade, unequivocally demonstrates that invasion of freshwater by gastrotrichs has taken place at least twice, in contrast with the single event hypothesis recently put forward

    Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin

    Get PDF
    Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours. Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs. Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin

    Loss of Sexual Reproduction and Dwarfing in a Small Metazoan

    Get PDF
    Asexuality has major theoretical advantages over sexual reproduction, yet newly formed asexual lineages rarely endure. The success, or failure, of such lineages is affected by their mechanism of origin, because it determines their initial genetic makeup and variability. Most previously described mechanisms imply that asexual lineages are randomly frozen subsamples of a sexual population.We found that transitions to obligate parthenogenesis (OP) in the rotifer Brachionus calyciflorus, a small freshwater invertebrate which normally reproduces by cyclical parthenogenesis, were controlled by a simple Mendelian inheritance. Pedigree analysis suggested that obligate parthenogens were homozygous for a recessive allele, which caused inability to respond to the chemical signals that normally induce sexual reproduction in this species. Alternative mechanisms, such as ploidy changes, could be ruled out on the basis of flow cytometric measurements and genetic marker analysis. Interestingly, obligate parthenogens were also dwarfs (approximately 50% smaller than cyclical parthenogens), indicating pleiotropy or linkage with genes that strongly affect body size. We found no adverse effects of OP on survival or fecundity.This mechanism of inheritance implies that genes causing OP may evolve within sexual populations and remain undetected in the heterozygous state long before they get frequent enough to actually cause a transition to asexual reproduction. In this process, genetic variation at other loci might become linked to OP genes, leading to non-random associations between asexuality and other phenotypic traits

    Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary)

    Get PDF
    This paper analyses two phytoplankton long-term datasets; both are from large, temperate shallow lakes. The main difference between them is that phytoplankton growth in Lake Balaton remained severely P-limited despite P-driven eutrophication during the last 30 years, whereas extremely high turbidity causes a permanent light limitation in Neusiedlersee and therefore an increase in P-loadings did not result in a similar increase in phytoplankton biomass. Neusiedlersee is a (slightly) saline inland lake. In Lake Balaton, the blue-green alga Cylindrospermopsis raciborskii blooms invariably if the July-august temperature deviates positively from a 30-year average by ca. 2 °C. A supposed global warming is predicted to cause a higher frequency (but not intensity!) of these blooms. Neusiedlersee is very shallow and therefore regulation techniques cannot prevent water levels sinking in successive dry years. Annual averages of phytoplankton seem to follow quite a regular, wave-like cyclicity. Such cycles can be recognised in the population records of the characteristic species. Similar changes were seen in changes of water level, conductivity, inorganic-P, inorganic N-forms and nutrient ratios. How phytoplankton species can follow a climatic cycle that covers 200 to 500 generations has not yet become clear. Because of reasons discussed in the paper, neither of the two cases can be generalised; each is quite individual
    corecore