19 research outputs found

    Estimation of Parameter Distributions for Reaction-Diffusion Equations with Competition using Aggregate Spatiotemporal Data

    Full text link
    Reaction diffusion equations have been used to model a wide range of biological phenomenon related to population spread and proliferation from ecology to cancer. It is commonly assumed that individuals in a population have homogeneous diffusion and growth rates, however, this assumption can be inaccurate when the population is intrinsically divided into many distinct subpopulations that compete with each other. In previous work, the task of inferring the degree of phenotypic heterogeneity between subpopulations from total population density has been performed within a framework that combines parameter distribution estimation with reaction-diffusion models. Here, we extend this approach so that it is compatible with reaction-diffusion models that include competition between subpopulations. We use a reaction-diffusion model of Glioblastoma multiforme, an aggressive type of brain cancer, to test our approach on simulated data that are similar to measurements that could be collected in practice. We use Prokhorov metric framework and convert the reaction-diffusion model to a random differential equation model to estimate joint distributions of diffusion and growth rates among heterogeneous subpopulations. We then compare the new random differential equation model performance against other partial differential equation models' performance. We find that the random differential equation is more capable at predicting the cell density compared to other models while being more time efficient. Finally, we use kk-means clustering to predict the number of subpopulations based on the recovered distributions

    Traveling Waves of a Go-or-Grow Model of Glioma Growth

    No full text
    Glioblastoma multiforme is a deadly brain cancer in which tumor cells excessively proliferate and migrate. The first mathematical models of the spread of gliomas featured reactiondiffusion equations, and later an idea emerged through experimental study called the "Go or Grow" hypothesis in which glioma cells have a dichotomous behavior: a cell either primarily proliferates or primarily migrates. We analytically investigate an extreme form of the "Go or Grow" hypothesis where tumor cell motility and cell proliferation are considered as separate processes. Different solution types are examined via approximate solution of traveling wave equations, and we determine conditions for various wave front forms.NSF [DMS-1518529, DMS-1615879]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Mathematically modeling the biological properties of gliomas: A review

    No full text
    Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use. In vitro studies are often used to simulate the effects of specific model parameters that would be difficult in a larger-scale model. With regard to glioma invasive properties, metabolic and vascular attributes can be modeled to gain insight into the infiltrative mechanisms that are attributable to the tumor\u27s aggressive behavior. Morphologically, gliomas show different characteristics that may allow their growth stage and invasive properties to be predicted, and models continue to offer insight about how these attributes are manifested visually. Recent studies have attempted to predict the efficacy of certain treatment modalities and exactly how they should be administered relative to each other. Imaging is also a crucial component in simulating clinically relevant tumors and their influence on the surrounding anatomical structures in the brain
    corecore