3,219 research outputs found

    Student Teaching and Research Laboratory Focusing on Brain-computer Interface Paradigms - A Creative Environment for Computer Science Students -

    Full text link
    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Aeroelastic stability analysis of the AD-1 manned oblique-wing aircraft

    Get PDF
    The AD-1 manned flight test program was conducted to evaluate the stability, control and handling characteristics of oblique wing aircraft. The results of the aeroelastic stability analysis are presented for both the wing alone and the wing with ailerons. A comparison was made between the results obtained using the traditional k-method of flutter analysis and the results using the PK or British method of flutter analysis. Studies were performed using the latest version of the NASTRAN computer code as well as the PASS/FLUT program

    Novel Virtual Moving Sound-based Spatial Auditory Brain-Computer Interface Paradigm

    Full text link
    This paper reports on a study in which a novel virtual moving sound-based spatial auditory brain-computer interface (BCI) paradigm is developed. Classic auditory BCIs rely on spatially static stimuli, which are often boring and difficult to perceive when subjects have non-uniform spatial hearing perception characteristics. The concept of moving sound proposed and tested in the paper allows for the creation of a P300 oddball paradigm of necessary target and non-target auditory stimuli, which are more interesting and easier to distinguish. We present a report of our study of seven healthy subjects, which proves the concept of moving sound stimuli usability for a novel BCI. We compare online BCI classification results in static and moving sound paradigms yielding similar accuracy results. The subject preference reports suggest that the proposed moving sound protocol is more comfortable and easier to discriminate with the online BCI.Comment: 4 pages (in conference proceedings original version); 6 figures, accepted at 6th International IEEE EMBS Conference on Neural Engineering, November 6-8, 2013, Sheraton San Diego Hotel & Marina, San Diego, CA; paper ID 465; to be available at IEEE Xplore; IEEE Copyright 201

    Head-related Impulse Response Cues for Spatial Auditory Brain-computer Interface

    Full text link
    This study provides a comprehensive test of a head-related impulse response (HRIR) cues for a spatial auditory brain-computer interface (saBCI) speller paradigm. We present a comparison with the conventional virtual sound headphone-based spatial auditory modality. We propose and optimize the three types of sound spatialization settings using a variable elevation in order to evaluate the HRIR efficacy for the saBCI. Three experienced and seven naive BCI users participated in the three experimental setups based on ten presented Japanese syllables. The obtained EEG auditory evoked potentials (AEP) resulted with encouragingly good and stable P300 responses in online BCI experiments. Our case study indicated that users could perceive elevation in the saBCI experiments generated using the HRIR measured from a general head model. The saBCI accuracy and information transfer rate (ITR) scores have been improved comparing to the classical horizontal plane-based virtual spatial sound reproduction modality, as far as the healthy users in the current pilot study are concerned.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Inter-stimulus Interval Study for the Tactile Point-pressure Brain-computer Interface

    Full text link
    The paper presents a study of an inter-stimulus interval (ISI) influence on a tactile point-pressure stimulus-based brain-computer interface's (tpBCI) classification accuracy. A novel tactile pressure generating tpBCI stimulator is also discussed, which is based on a three-by-three pins' matrix prototype. The six pin-linear patterns are presented to the user's palm during the online tpBCI experiments in an oddball style paradigm allowing for "the aha-responses" elucidation, within the event related potential (ERP). A subsequent classification accuracies' comparison is discussed based on two ISI settings in an online tpBCI application. A research hypothesis of classification accuracies' non-significant differences with various ISIs is confirmed based on the two settings of 120 ms and 300 ms, as well as with various numbers of ERP response averaging scenarios.Comment: 4 pages, 5 figures, accepted for EMBC 2015, IEEE copyrigh

    Chromatic and High-frequency cVEP-based BCI Paradigm

    Full text link
    We present results of an approach to a code-modulated visual evoked potential (cVEP) based brain-computer interface (BCI) paradigm using four high-frequency flashing stimuli. To generate higher frequency stimulation compared to the state-of-the-art cVEP-based BCIs, we propose to use the light-emitting diodes (LEDs) driven from a small micro-controller board hardware generator designed by our team. The high-frequency and green-blue chromatic flashing stimuli are used in the study in order to minimize a danger of a photosensitive epilepsy (PSE). We compare the the green-blue chromatic cVEP-based BCI accuracies with the conventional white-black flicker based interface.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh
    corecore