29 research outputs found

    Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia

    Get PDF
    Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan\u27s influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer\u27s disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan\u27s role in health and in cerebrovascular disease

    Recombinant human perlecan DV and its LG3 subdomain are neuroprotective and acutely functionally restorative in severe experimental ischemic stroke

    Get PDF
    Despite recent therapeutic advancements, ischemic stroke remains a major cause of death and disability. It has been previously demonstrated that  ~ 85-kDa recombinant human perlecan domain V (rhPDV) binds to upregulated integrin receptors (α2β1 and α5β1) associated with neuroprotective and functional improvements in various animal models of acute ischemic stroke. Recombinant human perlecan laminin-like globular domain 3 (rhPD

    Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia

    No full text
    Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan’s influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer’s disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan’s role in health and in cerebrovascular disease

    Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity

    No full text
    AIMS: Caveolin-1 (Cav-1) interacts with large conductance Ca(2+)-activated potassium channels (BKCa) and likely exerts a negative regulatory effect on the channel activity. We investigated the role of Cav-1 in modulating BK(Ca) channel-mediated, endothelium-derived hyperpolarizing factor (EDHF)-dependent arteriolar dilation in normal condition and in an experimental model of obesity. METHODS AND RESULTS: In isolated, pressurized (80 mmHg) gracilis muscle arterioles (approximately 100 microm) of Cav-1 knockout mice, acetylcholine (ACh)-induced, EDHF-mediated dilations were enhanced and were significantly reduced by the BK(Ca) channel inhibitor, iberiotoxin (IBTX), whereas IBTX had no effect on EDHF-mediated dilations in the wild-type mice. Dilations to the selective BK(Ca) channel opener, NS-1619 were augmented in the Cav-1 knockout mice. In high-fat diet-treated, obese rats ACh-induced coronary arteriolar dilations were preserved, whereas IBTX-sensitive, ACh-induced and also NS-1619-evoked vasodilations were augmented when compared with lean animals. In coronary arterioles of obese rats a reduced protein expression of Cav-1 was detected by western immunoblotting and immunohistochemistry. Moreover, in coronary arterioles of lean rats, disruption of caveolae with methyl-beta-cyclodextrin augmented IBTX-sensitive, ACh-induced, and also NS-1619-evoked dilations. CONCLUSION: Thus, under normal conditions, Cav-1 limits the contribution of the BK(Ca) channel to EDHF-mediated arteriolar dilation. In obesity, a reduced expression of Cav-1 leads to greater contribution of the BK(Ca) channel to EDHF-mediated response, which seems essential for maintained coronary dilation
    corecore