Myeloperoxidase evokes substantial vasomotor responses in isolated skeletal muscle arterioles of the rat

Viktória Csató, Attila Pető, Gábor Áron Fülöp, Ibolya Rutkai, Enikő T. Pásztor, Miklós Fagyas, Judit Kalász, István Édes, Attila Tóth, Zoltán Papp

Affiliations: Division of Clinical Physiology, Institute of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Short title:

Myeloperoxidase-mediated vasoregulation

Corresponding author:

Zoltán Papp

Division of Clinical Physiology
Institute of Cardiology, Research Center for Molecular Medicine,
Faculty of Medicine, University of Debrecen,
Móricz Zsigmond krt. 22.
H-4032, Debrecen, Hungary
Phone: +36 52411717 (Ext.:54329)
Fax: +36 52323978
E-mail: pappz@med.unideb.hu

Abstract

Aims: Myeloperoxidase (MPO) catalyzes the formation of a wide variety of oxidants, including hypochlorous acid (HOCl), and contributes to cardiovascular disease progression. We hypothesized that during its action MPO evokes substantional vasomotor responses.

Methods: Following exposure to MPO $\left(1.92 \mathrm{mU} \mathrm{ml}^{-1}\right)$ in the presence of increasing concentrations of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ changes in arteriolar diameter of isolated gracilis skeletal muscle arterioles (SMAs), and coronary arterioles (CAs) and in the isometric force in basilar arteries (BAs) of the rat were monitored.

Results: MPO increased vascular tone to different degrees in CAs, SMAs and BAs. The mechanism of increased vasoconstriction was studied in detail in SMAs. MPOevoked vasoconstrictions were prevented by the MPO inhibitor 4aminobenzhydrazide $(50 \mu \mathrm{M})$, by endothelium removal in the SMAs. Surprisingly, the HOCl scavenger L-methionine ($100 \mu \mathrm{M}$), the thromboxane A2 (TXA2) antagonist SQ$29548(1 \mu \mathrm{M})$ or the nonspecific cyclooxygenase (COX) antagonist indomethacin (1 $\mu \mathrm{M}$) converted the MPO-evoked vasoconstrictions to pronounced vasodilations in SMAs; not seen in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. In contrast to norepinephrine-induced vasoconstrictions, the MPO-evoked vasoconstrictions were not accompanied by significant increases in arteriolar $\left[\mathrm{Ca}^{2+}\right]$ levels in SMAs.

Conclusion: These data showed, $\mathrm{H}_{2} \mathrm{O}_{2}$-derived HOCl to be a potent vasoconstrictor upon MPO application. HOCl activated the COX pathway, causing the synthesis and release of TXA2-like substance to increase the Ca^{2+} sensitivity of the contractile apparatus in vascular smooth muscle cells and thereby to augment $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstrictions. Nevertheless, inhibition of the $\mathrm{HOCl}-\mathrm{COX}$ - TXA2 pathway

unmasked the effects of additional MPO-derived radicals with a marked vasodilatory potential in SMAs.

Key words: hydrogen peroxide, myeloperoxidase, smooth muscle calcium, thromboxane A2, vasoconstrictions

Introduction

The effector enzyme myeloperoxidase (MPO) has a protective role in inflammatory processes. However, the activation of MPO may become deleterious and can also contribute to the development of cardiovascular diseases (Nicholls and Hazen, 2005, Podrez et al., 2000, Klebanoff, 2005). Accordingly, excessive levels of MPO in the plasma may be accompanied by an increased risk of subsequent cardiovascular events (Baldus et al., 2003, Zhang et al., 2001c, Vita et al., 2004, Brennan et al., 2003, Karakas and Koenig, 2012, Kataoka et al., 2014), whereas individuals with an inherited MPO deficiency are at a reduced cardiovascular risk (Nikpoor et al., 2001, Hoy et al., 2001). There is currently no clear explanation of this situation.

MPO, a heme-containing, intensely green protein, was originally isolated from canine pus and from purulent fluids from patients with tuberculosis (Klebanoff, 2005, Malle et al., 2007). The synthesis of MPO is initiated in the bone marrow during myeloid differentiation and is completed in the granulocytes (Lau and Baldus, 2006, Hansson et al., 2006). MPO is stored primarily in the azurophil granules of the polymorphonuclear neutrophils and monocytes, but it has also been found in tissue macrophages (Daugherty et al., 1994, Lau and Baldus, 2006, Hampton et al., 1998, Klebanoff, 2005). To exert its antimicrobial effects, MPO primarily catalyzes the reaction of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ with chloride (Hampton et al., 1998), to form hypochlorous acid (HOCI) (Malle et al., 2007, Cook et al., 2012). The activation of MPO additionally gives rise to a number of other pro-oxidative radicals through its
peroxidase activity. The biological effects of the MPO (e.g. vasomotor activity, permeability, apoptotic effect) system depend on the local concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ (Golubinskaya et al., 2014) of other substrates and/or antioxidant molecules (e.g. methionine (Met) (Podrez et al., 2000, Porszasz et al., 2002). Taken together, the involvement of MPO has been implicated in vascular inflammation in association with infection, diabetes and atherosclerosis (Malle et al., 2007, Cook et al., 2012, Zhang et al., 2004, Kataoka et al., 2014, Sugiyama et al., 2001, Sirpal, 2009, Woods et al., 2003, Ford, 2010).

It is not known at present how the persistent generation of MPO-derived oxidants evokes adverse effects in vascular tissues. MPO and its oxidative products are highly abundant in human atherosclerotic lesions (Daugherty et al., 1994, Hazen and Heinecke, 1997, Hazen et al., 2000, Hazell et al., 1996). MPO is presumed to be involved in the oxidative modification of low-density lipoprotein, thereby converting it into a high-uptake form and hence promoting foamy cell formation. (Podrez et al., 1999, Savenkova et al., 1994) Through its catalytic activity, MPO can consume nitrogen monoxide (NO), thereby limiting its bioavailability (Eiserich et al., 2002, AbuSoud and Hazen, 2000). MPO-derived HOCl reacts with L-arginine and produces NO-synthesis inhibitors (Zhang et al., 2001b, Zhang et al., 2001a), and HOCl can impair endothelial NO bioactivity in a superoxide-dependent manner (Stocker et al., 2004). Furthermore, MPO and HOCl can activate matrix metalloproteinases and deactivate matrix metalloproteinase inhibitors, leading to weakening of the fibrous cap and the development of destabilized atherosclerotic plaque (Karakas and Koenig, 2012, Fu et al., 2001). From a functional aspect, MPO treatment led to a decrease in myocardial perfusion in pigs and inhibited the acetylcholine-evoked relaxation in the internal mammary arteries (Rudolph et al., 2012). Vasorelaxation in
response to acetylcholine was also found to be impaired in mice at relatively high plasma MPO levels (Zhang et al., 2013). Nevertheless, the mechanisms through, which MPO modulates the vascular responses are not well understood. In the present study, we made an effort to investigate the effects of MPO activation in vascular preparations in vitro. Moreover, we tried to characterize the possible mechanism of the vasomotor action of MPO in SMAs.

Since the MPO substrate $\mathrm{H}_{2} \mathrm{O}_{2}$ was earlier identified as an important regulator of vascular diameter under both normal and pathological conditions, the vasoactive effects of MPO were contrasted to those of $\mathrm{H}_{2} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}_{2}$ evokes a concentrationdependent biphasic effect in the skeletal muscle arterioles (SMAs) and mesenteric arteries in the rat, causing vasoconstriction at lower concentrations, and vasodilation at higher concentrations (Gao et al., 2003, Cseko et al., 2004, Csato et al., 2014), whereas, $\mathrm{H}_{2} \mathrm{O}_{2}$ induces only vasodilation in the rat coronaries (Csato et al., 2014).

In the present study, we investigated (i) the acute effects of MPO on the $\mathrm{H}_{2} \mathrm{O}_{2}-$ evoked changes in diameter in isolated SMAs and coronary arterioles (CAs) and on the contractile force in the basilar arteries (BAs) of the rat, and (ii) the signal transduction pathways mediating the vascular effects of MPO derived-oxidative radicals.

Materials and Methods

Animals, anesthesia and tissue dissection
Male Wistar rats (weighing 250-350 g, 6-9 weeks old) obtained from Toxi-Coop Toxicological Research Center, Dunakeszi, Hungary) were fed a standard chow and drank tap water ad libitum. Anesthesia was performed with an intraperitoneal injection of sodium pentobarbital ($150 \mathrm{mg} \mathrm{kg}^{-1}$) all efforts were made to minimize
suffering of animals. The gracilis muscle, the heart and the brain were removed and placed into silicone-coated Petri dishes containing $0-4{ }^{\circ} \mathrm{C}$ Krebs solution (composition in mM: $110 \mathrm{NaCl}, 5.0 \mathrm{KCl}, 2.5 \mathrm{CaCl}_{2}, 1.0 \mathrm{MgSO}_{4}, 1.0 \mathrm{KH}_{2} \mathrm{PO}_{4}, 5.0$ glucose and 24.0 NaHCO_{3}, obtained from Sigma-Aldrich, St. Louis, MO, USA) equilibrated with a gaseous mixture of $5 \% \mathrm{CO}_{2}, 10 \% \mathrm{O}_{2}$ and $85 \% \mathrm{~N}_{2}$ at pH 7.4 . All animal procedures used in this study were in full accordance with the rules of the Ethical Committee of the University of Debrecen and approved by the appropriate governmental body Directive 2010/63/EU of the European Parliament. The study is conforming with: Persson PB. Good Publication Practice in Physiology 2013 Guidelines for Acta Physiol (Oxf) (Persson, 2013).

Materials and drugs

The TXA2 inhibitor SQ-29548 was purchased from BioMarker Kft. (Gödöllő, Hungary). MPO protein, MPO inhibitor and COX antibodies were obtained from Abcam (Cambridge, UK). Secondary antibodies were from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA, USA). All other chemicals were from SigmaAldrich (St. Louis, MO, USA) and were kept under the conditions recommended by the manufacturer. All reported concentrations are cumulative concentrations in the organ chamber.

Measurement of arteriolar diameter

The rat SMAs and CAs were isolated and the changes in their diameters were mesaured as described earlier (Csato et al., 2014). Briefly, the isolated arterioles were transferred into an organ chamber and then were cannulated. The intraluminal pressure was set at 80 mmHg (pressure servo control system, Living Systems

Instrumentation, St. Albans, VT, USA). The temperature was maintained at $37{ }^{\circ} \mathrm{C}$ by the built in temperature controller in the tissue chamber (Living Systems Instrumentation, St. Albans, VT, USA). Changes in arteriolar diameter were recorded by a video microscope system (microscope: Nikon, Eclipse 80i; CCD camera: Topica Technology Co Ltd, Taipei, Taiwan; video digitalizer: National Institutes, Bethesda, USA). The isolated SMAs and CAs spontaneously developed a substantial myogenic tone (a decrease in diameter from $196 \pm 6 \mu \mathrm{~m}$ to $160 \pm 6 \mu \mathrm{~m}, \mathrm{n}=45$, and from 234 ± 14 $\mu \mathrm{m}$ to $178 \pm 14 \mu \mathrm{~m}, \mathrm{n}=9$, respectively) in response to an intraluminal pressure of 80 mmHg .

Measurement of arteriolar contractions under isometric conditions

BAs were prepared from rat brains with microsurgical tools, and ~ 4-mm-long rings were then mounted in an isometric contraction measurement system (DMT-510, Danish Myotechnology, Aarhus, Denmark). Before exposure to test solutions, vessel tone was normalized. To this end, preparations were stretched at a force by increasing 1.5 mN every 15 s until the calculated intraluminal pressure reached 13.4 kPa . The experiments were then performed at this stretch level (isometric contractions).

Experimental protocols

The endothelial function was tested with acetylcholine ($1 \mathrm{nM}-10 \mu \mathrm{M}$), and the smooth muscle function with norepinephrine ($1 \mathrm{nM}-10 \mu \mathrm{M}$, in SMAs), serotonin ($1 \mathrm{nM}-10 \mu \mathrm{M}$, in CAs) or potassium chloride ($10-60 \mathrm{mM}$, in BAs).

MPO activity was measured via detection of the chemiluminescence produced upon the oxidation of luminol. $\mathrm{H}_{2} \mathrm{O}_{2}$ working solutions were prepared from the
stabilized 30\% stock solution (Sigma Aldrich, St. Louis, MO, USA) immediately before the experiments and were stored on ice. The arterioles were first treated with MPO ($1.92 \mathrm{mU} \mathrm{ml}^{-1}, 300 \mathrm{~s}$ treatment duration, diameter measured every 10 s) to record the effects of MPO alone. This was followed by the addition of $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mu \mathrm{M}-10$ mM) and the responses to $\mathrm{MPO}+\mathrm{H}_{2} \mathrm{O}_{2}$ were then determined. In the BAs, the effects of MPO and $\mathrm{H}_{2} \mathrm{O}_{2}$ were tested after precontractions were evoked with 60 mM potassium chloride.

The mechanism of MPO-evoked vasomotor responses was explored in detail in SMAs. In some experiments, the endothelium was removed by the perfusion of air bubbles through the arterioles (denudation). Successful endothelium denudation was verified by the loss of dilation in response to acetylcholine ($10 \mu \mathrm{M}, 96 \pm 4 \%$ dilation before and $-6 \pm 4 \%$ after endothelium removal, $n=5$), while a maintained smooth muscle function was confirmed with norepinephrine ($71 \pm 1 \%$ constriction before and $64 \pm 2 \%$ after endothelium removal). The effects of MPO and $\mathrm{H}_{2} \mathrm{O}_{2}$ were also measured in the presence of an MPO inhibitor ($50 \mu \mathrm{M} 4$-aminobenzhydrazide), a TXA2 receptor inhibitor ($1 \mu \mathrm{M}$ SQ-29548) and a COX antagonist ($1 \mu \mathrm{M}$ indomethacin) in the SMAs. The effects of MPO were tested after incubation of the vessels with the HOCl scavenger L-Met $(20,40$ and $100 \mu \mathrm{M})$ in all three vessel types. At the end of the experiments, the maximal (passive) arteriolar diameter was determined in the absence of extracellular Ca^{2+}.

Simultaneous measurement of vascular diameter and intracellular $\mathbf{C a}^{2+}$ concentrations

Simultaneous measurements of intracellular Ca^{2+} and arteriolar diameter were performed as described previously (Csato et al., 2014, Czikora et al., 2012, Kandasamy et al., 2013). Briefly, SMAs were isolated and cannulated as mentioned above, except that the tissue bath was supplemented with 1% bovine serum albumin (Sigma Aldrich, St. Louis, MO, USA) and $5 \mu \mathrm{M}$ Fura-2AM, a ratiometric fluorescent Ca^{2+} indicator dye (Molecular Probes, Eugene, OR, USA) until a spontaneous myogenic tone developed. Intracellular Ca^{2+} concentrations were measured with an Incyte IM system (Intracellular Imaging Inc, Cincinnati, OH, USA). Fura-2 fluorescence (recorded every $2-5$ s) was excited alternately by 340 and 380-nm light, and the emitted fluorescence was detected above 510 nm . The outer arteriolar diameter was determined in each recorded image. Arteriolar Ca^{2+} concentration was determined as the Fura-2 fluorescence ratio ($\mathrm{F}_{340 / 380}$).

Immunohistochemistry

The gracilis muscle was removed from the rat and embedded in Tissue-Tek O.C.T compound (Electron Microscopy Sciences; Hatfield, PA, USA). Cryostat sections (10$\mu \mathrm{m}$-thick, Electron Microscopy Sciences; Hatfield, PA, USA) were prepared, fixed in acetone for $5-10 \mathrm{~min}$ and blocked with normal goat sera for $20 \mathrm{~min}(1.5 \%$ in PBS, Sigma-Aldrich; St. Louis, MO, USA). COX enzymes were stained with COX-1 (Rabbit anti COX1: ab109025, dilution: 1:50) and COX-2-specific antibodies (Rabbit antiCOX2: ab15191, dilution: 1:50). Antibodies were visualized through the use of fluorescent secondary antibodies (Goat anti-rabbit biotin, dilution: 1:100; goat antimouse FITZ, dilution: 1:300). Gracilis muscle was co-stained with anti-smooth muscle actin (NCL-SMA, dilution, 1:20; Novocastra Laboratories, Newcastle, UK) and DAPI
(Vector Laboratories, Burlingame, California, USA). Pictures were processed by ImageJ software (NIH, Bethesda, MD, USA).

Measurement of inhibitory effect of L-Met on the chlorinating activity of MPO

 MPO-evoked chlorinating activity was measured with a commercial assay kit (Cayman Chemical Company, Ann Arbor, MI, USA) in accordance with the manufacturer's instructions. The measurement is based on the cleavage of nonfluorescent 2-[6-(4-aminophenoxy)-3-oxo-3H-xanthen-9-yl] benzoic acid (APF) to fluorescein by MPO-generated hypochlorite (-OCI). The reaction mixtures contained $45 \mu \mathrm{M}$ APF, $30 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}, 3 \mathrm{UI}^{-1} \mathrm{MPO}$ and 200-0.39 mM L-Met (serially diluted). The measurements were performed in phosphate-buffered saline (PBS, $\mathrm{pH}=7.4$) independently from the in vitro vascular experiments. Changes in fluorescence intensity ($\lambda_{\mathrm{ex}}=485 \mathrm{~nm}, \lambda_{\mathrm{em}}=520 \mathrm{~nm}$) were measured at $30-\mathrm{s}$ intervals for 5 min with a plate reader (NovoStar plate reader, BMG Labtech). Fluorescence intensities values were plotted as a function of time and fitted by linear regression (before saturation). The slope of this relation was used to calculate MPO activities.
Data analysis and statistical procedures

The internal diameters of arterioles are shown as means \pm SEM. Arteriolar constriction was expressed as the change in diameter as a percentage of the initial diameter (before addition of the vasoactive agents) measured at an intraluminal pressure of 80 mmHg . Arteriolar dilation was calculated as the percentage of the maximal (passive) diameter determined in the absence of extracellular Ca^{2+} at the end of the experiments. The contractile force was indicated in absolute values, as the difference from the initial force in the case of isometric measurements. Statistical analyses were
performed with Microsoft Office Excel software by the Student's t-test. $P<0.05$ was considered statistically significant.

Results

MPO promotes $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstriction

MPO ($1.92 \mathrm{mU} \mathrm{ml}^{-1}$) increased the vascular tone, and promoted the development of vasoconstriction in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ in vascular beds of different origin. In the SMAs, a robust MPO-dependent vasoconstrictive effect was observed, i.e. from a $50 \pm 21 \%$ level of vasodilation (at $1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$), to $47 \pm 11 \%$ vasoconstriction following the addition of MPO $(P=0.004$; Fig. 1 A$)$. In the CAs , where $\mathrm{H}_{2} \mathrm{O}_{2}$ evoked only vasodilation, MPO administration resulted in significant vasoconstriction in a wide range of $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations, e.g. $13 \pm 4 \%$ dilation at $100 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$, but $6 \pm 3 \%$ constriction following the addition of MPO ($P=0.006$; Fig. 1B). In the BAs, the MPOdependent vasoconstriction was relatively less pronounced e.g. $1.1 \pm 0.5 \mathrm{mN}$ dilation at $100 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ and $1.6 \pm 0.7 \mathrm{mN}$ constriction following the addition of MPO $(P<0.05$; Fig. 1C). Vascular diameters measured under various test conditions are to be seen in Tables 1 and 2.

MPO alone (without the addition of its substrate $\mathrm{H}_{2} \mathrm{O}_{2}$) did not affect the diameters of the SMAs or the CAs or the contractile force in the BAs (data not shown).

HOCI mediates the MPO-induced vasoconstriction in the SMAs

The mechanical effects of the chlorinating activity of MPO were assessed comparing the vascular responses in the presence of the HOCl scavenger L-Met $(100 \mu \mathrm{M})$ with those in the presence of the MPO-specific inhibitor 4-aminobenzhydrazide ($50 \mu \mathrm{M}$)
(Fig. 2A and 2B). The extracellular concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ can reach as high as 300 $\mu \mathrm{M}$ in vivo, and our studies were therefore highlighted at this $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration. The MPO-specific inhibitor prevented the development of MPO-dependent vasoconstriction (maximal vasoconstriction at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2}+\mathrm{MPO}: 47 \pm 7 \%$ vs. $16 \pm 6 \%$ vasoconstriction, $P<0.0001$) as expected. In the presence of L-Met, however, the MPO induced-vasoconstrictions were converted to robust vasodilations (e.g. to $73 \pm 11 \%$ dilation at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{P}<0.0001$ vs. $\mathrm{MPO}+\mathrm{H}_{2} \mathrm{O}_{2}$) suggesting an MPOevoked, but HOCI-independent vasodilation mechanism. L-Met $(100 \mu \mathrm{M})$ alone did not affect the $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstriction in the absence of MPO (Fig. 2C). In a parallel in vitro enzyme assay, $100 \mu \mathrm{M}$ L-Met fully opposed the chlorinating activity of MPO (Fig. 2D).

Divergent effects of L-Met treatments on MPO-evoked vasodilations in different vessel types

The MPO-stimulated HOCl-independent vasodilating mechanism was screened in different vascular beds (Fig. 3). In the SMAs, the above mechanism exhibited an apparent L-Met concentration dependence (maximal vasoconstriction at $300 \mu \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2} 47 \pm 7 \%$ vs. vasodilations of $8 \pm 19 \%, 35 \pm 23 \%$, and $73 \pm 11 \%$ in the presence of 20, 40 and $100 \mu \mathrm{M}$ L-Met, respectively; Fig. 3 A and $3 B$). In the CA, the maximal LMet concentration ($100 \mu \mathrm{M}$) also provoked vasodilation at a high (1 mM) $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration, whereas at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ L-Met did not modulate the vascular tone (i.e. $3 \pm 9 \%$ vs. $13 \pm 7 \%$ vasodilation; $P=0.44$, Fig. $3 C$ and $3 D$). Finally, $100 \mu \mathrm{M}$ L-Met treatment did not significantly influence the MPO-evoked vascular responses in the BAs (e.g. $3.3 \pm 1 \mathrm{mN}$ vasoconstriction at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ vs. $4.0 \pm 1 \mathrm{mN}$ vasoconstriction, $P=0.61$; Fig. $3 E$ and $3 F$).

The signaling mechanism of MPO-evoked vasoconstriction in the SMAs

Endothelium removal inhibited the MPO-evoked vasoconstriction in the SMAs (e.g. $47 \pm 7 \%$ vasoconstriction at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MPO}$ with intact endothelium, vs. $13 \pm 15 \%$ vasoconstriction + MPO without endothelium, $P=0.07$; Fig. 4A).

Next, the involvement of the TXA2 receptors in the MPO-evoked vasoconstrictive effects was tested. Inhibition of the TXA2 receptors by $1 \mu \mathrm{M}$ SQ29548 converted the MPO-evoked vasoconstrictions to vasodilations (e.g. $47 \pm 7 \%$ vasoconstriction at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MPO}$ vs. $30 \pm 17 \%$ dilation at $300 \mu \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MPO}+\mathrm{TXA} 2$ receptor inhibitor; $\mathrm{P}=0.002$, Fig. 4B).

The role of COXs in the MPO-evoked vascular responses was also examined by using the nonspecific COX inhibitor indomethacin (1 $\mu \mathrm{M}$); similarly to TXA2 inhibition, this not only prevented the MPO-evoked vasoconstriction, but converted it that to vasodilation ($47 \pm 7 \%$ vasoconstriction at $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ vs. $69 \pm 16 \%$ vasodilation; $P=0.002$; Fig. 4C).

Vascular expression of COXs in the SMAs

The expression of COX isoenzymes in SMAs was tested by immunohistochemistry. Both the vascular smooth muscle layer and the endothelial cells were stained positively with the anti-COX-1 antibody, whereas the anti-COX-2 antibody did not produce a COX-specific staining pattern (Fig. 5).

MPO-induced vasoconstriction develops in the absence of significant intracellular Ca^{2+} concentration changes

Measurements of the intracellular Ca^{2+} concentration and the arteriolar diameter changes were performed in parallel in the SMAs. MPO-evoked vasoconstriction
($29 \pm 3 \%$ vasoconstriction at $1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2} ; P=0.04$ vs. the baseline) developed without significant changes in the $\mathrm{F}_{340 / 380}$ ratio signal in the range of $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations between $1 \mu \mathrm{M}$ and 1 mM (Fig. 6A). In contrast, the norepinephrine-evoked (1 nM-10 $\mu \mathrm{M}$) vasoconstrictions with comparable magnitudes ($44 \pm 4 \%$ constriction at $10 \mu \mathrm{M}$ norepinephrine; $P=0.0005$ vs. the baseline) were accompanied by significant increases in the $F_{340 / 380}$ ratio (from 0.85 ± 0.03 to 1.15 ± 0.09; Fig. $6 B$). MPO alone did not have any effect on the arteriolar diameter or on the $\mathrm{F}_{340 / 380}$ signal (not shown).

Discussion

Vascular inflammation during endothelial dysfunction (Zhang et al., 2001a), atherosclerosis (Sugiyama et al., 2001, Sirpal, 2009, Woods et al., 2003, Ford, 2010) diabetes mellitus (Zhang et al., 2004, Kataoka et al., 2014), coronary artery disease (Cavusoglu et al., 2007, Mayyas et al., 2014) is characterized by increased levels of production and local release of both $\mathrm{H}_{2} \mathrm{O}_{2}$ and MPO. Moreover the increased generation of MPO was observed in neurodegenerative disorders (Reynolds et al., 1999, Pennathur et al., 1999), arthritis (Bender et al., 1986) and some cancers (Reynolds et al., 1997). We hypothesized that MPO evokes substantial vasomotor responses in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. This process may have immediate (acute) effects on the vascular diameter, which was tested here under in vitro conditions. The details of intracellular mechanisms responsible for the MPO elicited vasomotor responses were studied in SMAs. The most important findings of this study are that (1) MPO has the potential to promote vasoconstriction in $\mathrm{H}_{2} \mathrm{O}_{2}$-treated SMAs, CAs or BAs of the rat; (2) in the SMAs, MPO facilitates the $\mathrm{H}_{2} \mathrm{O}_{2}$-dependent activation of COX - 1 and the TXA2 receptors, resulting in an increase in the Ca^{2+} sensitivity of force production in
the smooth muscle cells; and (3) L-Met inhibits the chlorinating activity of MPO, and converts MPO-evoked vasoconstrictions to vasodilations in the SMAs.

The question arises as to whether the observed decreased vasodilation in the presence of MPO originates from $\mathrm{H}_{2} \mathrm{O}_{2}$ consumption by MPO, thereby requiring a higher nominal $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration to produce comparable vasodilations. At lower concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$, the level of vasoconstriction was similar in the absence and in the presence of MPO, while at higher concentrations of $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{MPO}$ led to higher maximal vasoconstriction levels, thereby suggesting that MPO did not simply shift the apparent $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration dependences of the vascular responses. We therefore postulate alternative mechanisms for the explanation of the MPO-dependent vascular effects.

One of the major products of the MPO-mediated conversion of $\mathrm{H}_{2} \mathrm{O}_{2}$ is HOCl . Our in vitro vascular measurements were performed in Ca^{2+} containing Krebs solution which provided the chloride ions for the MPO to generate HOCl . The mechanisms through which HOCl can affect vascular tissues have been examined by a number of research groups. HOCl initiates the halogenation, nitration and oxidativecrosslinking of amino acids, lipids and nucleotides (Prutz, 1996, Albrich et al., 1981). Less is known about the molecular pathways involved in the HOCl-evoked changes in vascular dynamics. One such possibility relates to a decrease in NO bioavailability, as suggested by observations on HOCl -dependent impairments in endothelial function (Yang et al., 2006, Stocker et al., 2004, Xu et al., 2006). Similarly to our findings, HOCl was found to cause vasoconstriction in bovine pulmonary arteries, but the exact mechanism of this effect remained unclear (Turan et al., 2000). The present investigation revealed increases in vasoconstriction in the SMAs, CAs and BAs, thereby extending the range of vascular beds affected in this way by MPO. We
additionally made an effort to identify the molecular mechanisms contributing to these vasoconstrictive effects, besides to the decreased NO bioavailability reported earlier. One of the major observations was that the widely accepted HOCI scavenger L-Met (Okabe et al., 1993, Zhang et al., 2003, Zhang et al., 2004) not only inhibited the vasoconstriction evoked by MPO, but also unmasked a robust vasodilatory effect in the SMAs. The employed MPO-specific inhibitor, 4-aminobenzhydrazide blocked both the chlorinating and the peroxidase activities of the MPO (Malle et al., 2007, Kettle et al., 1995, Kettle et al., 1997) and prevented the vasoconstriction evoked by MPO. In the presence of 4-aminobenzhydrazide and MPO however, the vascular responses to $\mathrm{H}_{2} \mathrm{O}_{2}$ did not differ significantly from those in the absence of MPO. Collectively, the above data suggested that MPO-mediated chlorination has a major role in the activation of a signaling pathway leading to vasoconstriction. L-Met not only antagonized this effect, but revealed an additional MPO-dependent mechanism leading to vasodilation. This latter effect was probably related to the peroxidase activity of MPO that was not inhibited by L-Met. It is worthy of consideration that in the CAs and BAs, where MPO evoked vasoconstrictions were less pronounced than those in the SMAs, L-Met did not result in significant vasodilations, which is suggestive of differential expressions of the MPO-responsive vasodilatory pathways in the different vascular beds.

Effector structures responding to MPO-derived radicals were first tested by removal of the endothelium in SMAs, which eliminated the endothelium-derived effects, including decreased NO bioavailability (Stocker et al., 2004, Xu et al., 2006, Turan et al., 2000). Importantly, $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstrictions were found in a previous study to be completely endothelium-dependent (Csato et al., 2014). However, the vasoconstriction evoked by $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of MPO was only
partially opposed by endothelium removal (Fig. 4A), suggesting that the MPO-evoked vasoconstriction was only partially endothelium-dependent. These observations, together with those in the presence of the COX inhibitor indomethachin and the TXA2 inhibitor SQ-29548, implicate that MPO causes the generation of a vasoconstrictive prostanoide derivate (potentially TXA2) not only in the endothelial cells, but also in the vascular smooth muscle cells, through the activation of COXs. To confirm this possibility, the expression of COXs enzymes was explored by means of immunohistochemistry, and COX-1-specific staining was indeed confirmed both in the endothelial layer and in the smooth muscle cells of the SMAs. Interestingly, not only was the MPO-mediated vasoconstriction prevented by either TXA2 receptor inhibition or COX inhibition, but similarly as when L-Met was applied it was converted to vasodilation. A role for TXA2 was implicated by its pharmacological inhibitor, nevertheless we did not examine TXA2 production upon MPO exposures. Taken together, we postulate that the MPO-evoked vasoconstriction is mediated by a vasoconstrictive prostanoid derivative through TXA2 receptor activation. Hence, the above findings point to a HOCl - COX1 - TXA2 pathway as being decisive in the prevention of MPO-dependent vasodilation in the SMAs (Fig. 7).

Numerous previous studies have furnished evidence that $\mathrm{H}_{2} \mathrm{O}_{2}$ is an important regulator of the vascular diameter (Matoba et al., 2000, Yada et al., 2003, Matoba et al., 2003, Koller and Bagi, 2004, Miura et al., 2003, Gao and Lee, 2005, Gao et al., 2003, Gao and Lee, 2001). It is difficult to specify the physiologic concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in vascular tissues in vivo. Nevertheless, it has been found that under pathologic conditions it may increase up to 0.3 mM . In our study, $\mathrm{H}_{2} \mathrm{O}_{2}$ was used in a wide concentration range ($1 \mu \mathrm{M}-10 \mathrm{mM}$), thus covering also pharmacological levels. This approach allowed us to reveal the mechanisms of MPO derived vascular effects
developing on top of the biphasic $\mathrm{H}_{2} \mathrm{O}_{2}$ dependent responses (Liu and Zweier, 2001, Root and Metcalf, 1977, Cseko et al., 2004). In higher concentrations $\mathrm{H}_{2} \mathrm{O}_{2}$ may cause vasodilation. The possible mechanism of the $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasodilation has been investigated by a number of groups in different vessel types (lida and Katusic, 2000, Thengchaisri and Kuo, 2003, Zhang et al., 2012). Our previous results implicated the involvement of the NO/cyclic guanosine monophosphate pathway and the activation of K^{+}channels in SMAs (Cseko et al., 2004).

Under pathological conditions associated with inflammation, such as acute infections (Hampton et al., 1998, Pullar et al., 2000, Hirche et al., 2005), diabetes (Zhang et al., 2004, Kataoka et al., 2014), atherosclerosis (Sugiyama et al., 2001, Sirpal, 2009, Woods et al., 2003, Ford, 2010), arthritis (Bender et al., 1986), Alzheimer disease (Reynolds et al., 1999), and Parkinson disease (Pennathur et al., 1999) MPO is released together with $\mathrm{H}_{2} \mathrm{O}_{2}$. In vivo conditions, MPO is released together with $\mathrm{H}_{2} \mathrm{O}_{2}$. Under these circumstances L-Met may prevent $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstriction or even convert it into vasodilation, because L-Met in its presumed physiological concentration range (i.e. 20-40 $\mu \mathrm{M}$) (Mayo Medical Laboratories, 2015) also largely prevents the vasoconstrictions evoked by MPO in the SMAs. Hence, the ultimate effect on the vascular tone and thereby on local microcirculation will be a function of the availability of a range of local regulators (e.g. $\mathrm{H}_{2} \mathrm{O}_{2}$, MPO, L-Met, etc.) which are of high potency in vasoregulation (Cseko et al., 2004).

The MPO-induced vasoconstrictions were not accompanied by significant increases in the intracellular Ca^{2+} concentration in the $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration range of between $100 \mu \mathrm{M}$ and 1 mM . In contrast, norepinephrine treatment evoked vasoconstrictions to similar degrees, together with significant increases in the intracellular Ca^{2+} concentration, suggesting that MPO (similarly to the thromboxane

A2 receptor agonist U46619) activated a Ca^{2+}-sensitizing mechanism, causing vasoconstriction rather than increasing the intracellular Ca^{2+} concentration (Csato et al., 2014). The mechanism of MPO-mediated vasodilation was beyond the scope of this study.

Overall, our present results suggest that MPO-derived HOCl can enhance the production of a TXA2-like vasoconstrictive molecule both in the endothelium and in the vascular smooth muscle cells of SMAs, thereby increasing the sensitivity of the contractile protein machinery in the vascular smooth muscle cells to produce vasoconstriction. Nevertheless, in the absence of a functional $\mathrm{HOCI}-\mathrm{COX} 1$ - TXA2 pathway, an MPO dependent vasodilatory mechanism may prevail in the SMAs of the rat during tissue inflammation associated with neutrophil degranulation.

Acknowledgments

Conflicts of interest: grants from the Hungarian Scientific Research Fund (OTKA): K 84300 (to AT) and K 109083 (to ZP); and the Hungarian Social Renewal Operational Program TÁMOP-4.2.A-11/1KONV-2012-0045.

Disclosure: none declared

Study limitations

In this study we aimed to explore the effects of MPO and H 2 O 2 in vascular preparations with different origins. Due to differences in vascular diameters for SMAs, CAs and BAs: (i.e. $\sim 160 \mu \mathrm{~m}, \sim 180 \mu \mathrm{~m}, \sim 250 \mu \mathrm{~m}$, respectively) the same experimental set-up could not be employed for all vascular beds. Prior test incubations, spontaneous myogenic tone developed in isotonic preparations (SMAs and CAs), while during isometric measurements (BAs) agonist induced constrictions were applied. Consequently, the extent of the observed vascular responses may reflect differences in experimental arrangements. Nevertheless, the direction of
vascular responses (vasodilation vs. vasoconstriction) could be determined convincingly because results were contrasted to controls under the same experimental conditions.

References

Abu-Soud, H. M. \& Hazen, S. L. 2000. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem, 275, 37524-32.
Albrich, J. M., McCarthy, C. A. \& Hurst, J. K. 1981. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A, 78, 210-4.
Baldus, S., Heeschen, C., Meinertz, T., Zeiher, A. M., Eiserich, J. P., Munzel, T., Simoons, M. L. \& Hamm, C. W. 2003. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation, 108, 1440-5.
Bender, J. G., Van Epps, D. E., Searles, R. \& Williams, R. C., Jr. 1986. Altered function of synovial fluid granulocytes in patients with acute inflammatory arthritis: evidence for activation of neutrophils and its mediation by a factor present in synovial fluid. Inflammation, 10, 443-53.
Brennan, M. L., Penn, M. S., Van Lente, F., Nambi, V., Shishehbor, M. H., Aviles, R. J., Goormastic, M., Pepoy, M. L., McErlean, E. S., Topol, E. J., Nissen, S. E. \& Hazen, S. L. 2003. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med, 349, 1595-604.
Cavusoglu, E., Ruwende, C., Eng, C., Chopra, V., Yanamadala, S., Clark, L. T., Pinsky, D. J. \& Marmur, J. D. 2007. Usefulness of baseline plasma myeloperoxidase levels as an independent predictor of myocardial infarction at two years in patients presenting with acute coronary syndrome. Am J Cardiol, 99, 1364-8.
Cook, N. L., Viola, H. M., Sharov, V. S., Hool, L. C., Schoneich, C. \& Davies, M. J. 2012. Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca^{2+}-ATPase activity and perturb Ca^{2+} homeostasis in human coronary artery endothelial cells. Free Radic Biol Med, 52, 951-61.
Czikora, A., Lizanecz, E., Bako, P., Rutkai, I., Ruzsnavszky, F., Magyar, J., Porszasz, R., Kark, T., Facsko, A., Papp, Z., Edes, I. \& Toth, A. 2012. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1. Br J Pharmacol, 165, 1801-12.
Csato, V., Peto, A., Koller, A., Edes, I., Toth, A. \& Papp, Z. 2014. Hydrogen peroxide elicits constriction of skeletal muscle arterioles by activating the arachidonic Acid pathway. PLoS One, 9, e103858.
Cseko, C., Bagi, Z. \& Koller, A. 2004. Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. J Appl Physiol (1985), 97, 1130-7.
Daugherty, A., Dunn, J. L., Rateri, D. L. \& Heinecke, J. W. 1994. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest, 94, 437-44.
Eiserich, J. P., Baldus, S., Brennan, M. L., Ma, W., Zhang, C., Tousson, A., Castro, L., Lusis, A. J., Nauseef, W. M., White, C. R. \& Freeman, B. A. 2002. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science, 296, 2391-4.
Ford, D. A. 2010. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia. Clin Lipidol, 5, 835-852.
Fu, X., Kassim, S. Y., Parks, W. C. \& Heinecke, J. W. 2001. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem, 276, 4127987.

Gao, Y. J., Hirota, S., Zhang, D. W., Janssen, L. J. \& Lee, R. M. 2003. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol, 138, 1085-92.
Gao, Y. J. \& Lee, R. M. 2001. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane $\mathrm{A}(2)$ production. Br J Pharmacol, 134, 1639-46.
Gao, Y. J. \& Lee, R. M. 2005. Hydrogen peroxide is an endothelium-dependent contracting factor in rat renal artery. Br J Pharmacol, 146, 1061-8.
Golubinskaya, V., Brandt-Eliasson, U., Gan, L. M., Kjerrulf, M. \& Nilsson, H. 2014. Endothelial function in a mouse model of myeloperoxidase deficiency. Biomed Res Int, 2014, 128046.
Hampton, M. B., Kettle, A. J. \& Winterbourn, C. C. 1998. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood, 92, 3007-17.
Hansson, M., Olsson, I. \& Nauseef, W. M. 2006. Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys, 445, 214-24.
Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E. \& Stocker, R. 1996. Presence of hypochloritemodified proteins in human atherosclerotic lesions. J Clin Invest, 97, 1535-44.
Hazen, S. L., Gaut, J. P., Crowley, J. R., Hsu, F. F. \& Heinecke, J. W. 2000. Elevated levels of proteinbound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions. Biochem J, 352 Pt 3, 693-9.
Hazen, S. L. \& Heinecke, J. W. 1997. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest, 99, 2075-81.
Hirche, T. O., Gaut, J. P., Heinecke, J. W. \& Belaaouaj, A. 2005. Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense. J Immunol, 174, 1557-65.
Hoy, A., Tregouet, D., Leininger-Muller, B., Poirier, O., Maurice, M., Sass, C., Siest, G., Tiret, L. \& Visvikis, S. 2001. Serum myeloperoxidase concentration in a healthy population: biological variations, familial resemblance and new genetic polymorphisms. Eur J Hum Genet, 9, 780-6.
lida, Y. \& Katusic, Z. S. 2000. Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke, 31, 2224-30.
Kandasamy, K., Bezavada, L., Escue, R. B. \& Parthasarathi, K. 2013. Lipopolysaccharide induces endoplasmic store Ca2+-dependent inflammatory responses in lung microvessels. PLoS One, 8, e63465.
Karakas, M. \& Koenig, W. 2012. Myeloperoxidase production by macrophage and risk of atherosclerosis. Curr Atheroscler Rep, 14, 277-83.
Kataoka, Y., Shao, M., Wolski, K., Uno, K., Puri, R., Murat Tuzcu, E., Hazen, S. L., Nissen, S. E. \& Nicholls, S. J. 2014. Myeloperoxidase levels predict accelerated progression of coronary atherosclerosis in diabetic patients: insights from intravascular ultrasound. Atherosclerosis, 232, 377-83.
Kettle, A. J., Gedye, C. A., Hampton, M. B. \& Winterbourn, C. C. 1995. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem J, 308 (Pt 2), 559-63.
Kettle, A. J., Gedye, C. A. \& Winterbourn, C. C. 1997. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J, 321 (Pt 2), 503-8.
Klebanoff, S. J. 2005. Myeloperoxidase: friend and foe. J Leukoc Biol, 77, 598-625.
Koller, A. \& Bagi, Z. 2004. Nitric oxide and $\mathrm{H}_{2} \mathrm{O}_{2}$ contribute to reactive dilation of isolated coronary arterioles. Am J Physiol Heart Circ Physiol, 287, H2461-7.
Lau, D. \& Baldus, S. 2006. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther, 111, 16-26.
Liu, X. \& Zweier, J. L. 2001. A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes. Free Radic Biol Med, 31, 894-901.

Malle, E., Furtmuller, P. G., Sattler, W. \& Obinger, C. 2007. Myeloperoxidase: a target for new drug development? Br J Pharmacol, 152, 838-54.
Matoba, T., Shimokawa, H., Morikawa, K., Kubota, H., Kunihiro, I., Urakami-Harasawa, L., Mukai, Y., Hirakawa, Y., Akaike, T. \& Takeshita, A. 2003. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol, 23, 1224-30.
Matoba, T., Shimokawa, H., Nakashima, M., Hirakawa, Y., Mukai, Y., Hirano, K., Kanaide, H. \& Takeshita, A. 2000. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest, 106, 1521-30.
Mayo Medical Laboratories, 2015, Test ID: AAQP Amino Acids, Quantitative, Plasma (www document) http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/9265
Mayyas, F. A., Al-Jarrah, M. I., Ibrahim, K. S. \& Alzoubi, K. H. 2014. Level and significance of plasma myeloperoxidase and the neutrophil to lymphocyte ratio in patients with coronary artery disease. Exp Ther Med, 8, 1951-1957.
Miura, H., Bosnjak, J. J., Ning, G., Saito, T., Miura, M. \& Gutterman, D. D. 2003. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res, 92, e31-40.
Nicholls, S. J. \& Hazen, S. L. 2005. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol, 25, 1102-11.
Nikpoor, B., Turecki, G., Fournier, C., Theroux, P. \& Rouleau, G. A. 2001. A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in FrenchCanadians. Am Heart J, 142, 336-9.
Okabe, E., Takahashi, S., Norisue, M., Manson, N. H., Kukreja, R. C., Hess, M. L. \& Ito, H. 1993. The effect of hypochlorous acid and hydrogen peroxide on coronary flow and arrhythmogenesis in myocardial ischemia and reperfusion. Eur J Pharmacol, 248, 33-9.
Pennathur, S., Jackson-Lewis, V., Przedborski, S. \& Heinecke, J. W. 1999. Mass spectrometric quantification of 3 -nitrotyrosine, ortho-tyrosine, and 0,0 '-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J Biol Chem, 274, 34621-8.
Persson. PB. 2013. Good Publication Practice in Physiology: Guidelines for Acta Physiol. Acta Physiol, 209, 250-3.
Podrez, E. A., Abu-Soud, H. M. \& Hazen, S. L. 2000. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med, 28, 1717-25.
Podrez, E. A., Schmitt, D., Hoff, H. F. \& Hazen, S. L. 1999. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest, 103, 1547-60.
Porszasz, R., Porkolab, A., Ferencz, A., Pataki, T., Szilvassy, Z. \& Szolcsanyi, J. 2002. Capsaicin-induced nonneural vasoconstriction in canine mesenteric arteries. Eur J Pharmacol, 441, 173-5.
Prutz, W. A. 1996. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys, 332, 110-20.
Pullar, J. M., Vissers, M. C. \& Winterbourn, C. C. 2000. Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life, 50, 259-66.
Reynolds, W. F., Chang, E., Douer, D., Ball, E. D. \& Kanda, V. 1997. An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood, 90, 2730-7.
Reynolds, W. F., Rhees, J., Maciejewski, D., Paladino, T., Sieburg, H., Maki, R. A. \& Masliah, E. 1999. Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer's disease. Exp Neurol, 155, 31-41.
Root, R. K. \& Metcalf, J. A. 1977. $\mathrm{H}_{2} \mathrm{O}_{2}$ release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of $\mathrm{H}_{2} \mathrm{O}_{2}$: studies with normal and cytochalasin B-treated cells. J Clin Invest, 60, 1266-79.
Rudolph, T. K., Wipper, S., Reiter, B., Rudolph, V., Coym, A., Detter, C., Lau, D., Klinke, A., Friedrichs, K., Rau, T., Pekarova, M., Russ, D., Knoll, K., Kolk, M., Schroeder, B., Wegscheider, K., et al.
2012. Myeloperoxidase deficiency preserves vasomotor function in humans. Eur Heart J, 33, 1625-34.
Savenkova, M. L., Mueller, D. M. \& Heinecke, J. W. 1994. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem, 269, 20394-400.
Sirpal, S. 2009. Myeloperoxidase-mediated lipoprotein carbamylation as a mechanistic pathway for atherosclerotic vascular disease. Clin Sci (Lond), 116, 681-95.
Stocker, R., Huang, A., Jeranian, E., Hou, J. Y., Wu, T. T., Thomas, S. R. \& Keaney, J. F., Jr. 2004. Hypochlorous acid impairs endothelium-derived nitric oxide bioactivity through a superoxide-dependent mechanism. Arterioscler Thromb Vasc Biol, 24, 2028-33.
Sugiyama, S., Okada, Y., Sukhova, G. K., Virmani, R., Heinecke, J. W. \& Libby, P. 2001. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol, 158, 879-91.
Thengchaisri, N. \& Kuo, L. 2003. Hydrogen peroxide induces endothelium-dependent and independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol, 285, H2255-63.
Turan, N. N., Demiryurek, A. T. \& Kanzik, I. 2000. Hypochlorous acid-induced responses in sheep isolated pulmonary artery rings. Pharmacol Res, 41, 589-96.
Vita, J. A., Brennan, M. L., Gokce, N., Mann, S. A., Goormastic, M., Shishehbor, M. H., Penn, M. S., Keaney, J. F., Jr. \& Hazen, S. L. 2004. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation, 110, 1134-9.
Woods, A. A., Linton, S. M. \& Davies, M. J. 2003. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J, 370, 72935.

Xu, J., Xie, Z., Reece, R., Pimental, D. \& Zou, M. H. 2006. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of $N A D(P) H$ oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol, 26, 2688-95.
Yada, T., Shimokawa, H., Hiramatsu, O., Kajita, T., Shigeto, F., Goto, M., Ogasawara, Y. \& Kajiya, F. 2003. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation, 107, 1040-5.
Yang, J., Ji, R., Cheng, Y., Sun, J. Z., Jennings, L. K. \& Zhang, C. 2006. L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. J Pharmacol Exp Ther, 318, 1044-9.
Zhang, C., Patel, R., Eiserich, J. P., Zhou, F., Kelpke, S., Ma, W., Parks, D. A., Darley-Usmar, V. \& White, C. R. 2001a. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol, 281, H1469-75.
Zhang, C., Reiter, C., Eiserich, J. P., Boersma, B., Parks, D. A., Beckman, J. S., Barnes, S., Kirk, M., Baldus, S., Darley-Usmar, V. M. \& White, C. R. 2001b. L-arginine chlorination products inhibit endothelial nitric oxide production. J Biol Chem, 276, 27159-65.
Zhang, C., Yang, J., Jacobs, J. D. \& Jennings, L. K. 2003. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Physiol Heart Circ Physiol, 285, H2563-72.
Zhang, C., Yang, J. \& Jennings, L. K. 2004. Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species. Diabetes, 53, 2950-9.
Zhang, D. X., Borbouse, L., Gebremedhin, D., Mendoza, S. A., Zinkevich, N. S., Li, R. \& Gutterman, D. D. 2012. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca^{2+}-activated K^{+}channel activation. Circ Res, 110, 47180.

Zhang, H., Xu, H., Weihrauch, D., Jones, D. W., Jing, X., Shi, Y., Gourlay, D., Oldham, K. T., Hillery, C. A. \& Pritchard, K. A., Jr. 2013. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice. J Lipid Res, 54, 3009-15.

Zhang, R., Brennan, M. L., Fu, X., Aviles, R. J., Pearce, G. L., Penn, M. S., Topol, E. J., Sprecher, D. L. \& Hazen, S. L. 2001c. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA, 286, 2136-42.

Significance

Cardiovascular diseases are associated with inflammation and increased oxidative stress. An understanding of the physiological responses as concerns pro-oxidant mechanisms may contribute to the development of new and more effective drugs in the fight against cardiovascular diseases. The most important message of this paper is that L-Met not only has the potential to prevent the vasoconstrictive responses due to activation of the $\mathrm{HOCI}-\mathrm{COX} 1-\mathrm{TXA} 2$ pathway, but can evoke pronounced vasodilations in the presence of the proinflammatory enzyme MPO.

Tables

Table 1. Effects of different inhibitors and endothelium removal on the MPOand $\mathrm{H}_{2} \mathrm{O}_{2}$-induced arteriolar responses

Tissue sources of arteriolar beds are indicated (CAs or SMAs). Diameters are shown as means \pm S.E.M. in absolute values $(\mu \mathrm{m})$. The number of experiments performed is also indicated. Arteriolar diameters are given at the beginning of the experiments (initial diameter) and after treatment with $100 \mu \mathrm{M}$ (the maximum constrictor dose in the control) or 10 mM (the maximum dilator dose in the control) $\mathrm{H}_{2} \mathrm{O}_{2}$. The effects of preincubations with inhibitors (diameter after the inhibitor) and the maximum diameter of the vessels (the passive diameter) are also indicated.

Table 2. Effects of different treatments on the MPO-and $\mathrm{H}_{2} \mathrm{O}_{2}$-induced changes in isometric contractile force in the BAs

Force values are given as means \pm S.E.M. in absolute values (mN). The number of experiments performed is also indicated. Contractile forces refer to the beginnings of the experiments (initial force), after precontraction with $\mathrm{KCl}(10 \mathrm{mM}$ or 60 mM), and after treatment with MPO and $1 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$.

Table 1.

Type of arteriole	Coronary arterioles		Skeletal muscle arterioles								
Treatment	Nonel Control	MPO+	Nonel Control	$\begin{aligned} & \text { MPO+ } \\ & \text { SQ-29548 } \end{aligned}$	MPO+endothelium denudation	MPO+ indomethacin	$\begin{aligned} & \hline \text { MPO+ } \\ & 100 \mu \mathrm{M} \text { L-Met } \\ & \hline \end{aligned}$	$100 \mu \mathrm{M}$ L-Met	$\begin{aligned} & \text { MPO+ } \\ & 40 \mu \mathrm{M} \text { L-met } \end{aligned}$	$\begin{aligned} & \text { MPO+ } \\ & 20 \mu \mathrm{M} \text { L-Met } \end{aligned}$	MPO+4-aminobenzhydrazide
No. of experiments	5	4	5	5	5	5	5	5	4	6	5
Initial diameter	180 ± 17	85 ± 15	182 ± 12	136 ± 15	171 ± 7	178 ± 8	115 ± 23	123 ± 8	151 ± 9	183 ± 25	188 ± 7
Diameter after inhibitor	-	76 ± 12	-	141 ± 14	-	166 ± 7	112 ± 20	-	143 ± 12	176 ± 25	-
Diameter after MPO	190 ± 16	73 ± 9	182 ± 12	142 ± 13	172 ± 7	168 ± 8	115 ± 19	120 ± 14	143 ± 13	175 ± 24	181 ± 8
Diameter after 1 mM H2O2	191 ± 12	105 ± 15	93 ± 17	171 ± 19	179 ± 6	193 ± 8	175 ± 22	168 ± 13	184 ± 18	191 ± 26	143 ± 28
Passive diameter	234 ± 12	123 ± 10	233 ± 11	182 ± 13	190 ± 4	199 ± 8	179 ± 18	184 ± 6	193 ± 15	208 ± 26	225 ± 3

Table 2.

Treatment	None/Control	MPO+ $\mathbf{1 0 0} \boldsymbol{\mu} \mathrm{M} \mathrm{L-Met}$
No. of experiments	5	5
Initial force	5.5 ± 1.70	0.55 ± 0.65
Force after 10 mM KCl	1 ± 0.47	0.52 ± 0.41
Force after 60 mM KCl	9.97 ± 1.41	7.16 ± 1.41
Force after MPO	9.97 ± 1.41	8.02 ± 1.59
Force after 1 mM H	O_{2}	2.77 ± 0.46

Figure legends

Figure 1. MPO promotes $\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstriction in different vascular beds

After preincubation with MPO (activity: $1.92 \mathrm{mU} \mathrm{ml}^{-1}, 600 \mathrm{~s}$), isolated, cannulated SMAs (initial diameter (id): $182 \pm 12 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 4 different animals; panel A) or CAs (id: $180 \pm 17 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 5 different animals; panel B) with intact endothelium were treated with increasing concentrations ($1 \mu \mathrm{M}-10 \mathrm{mM}$) of $\mathrm{H}_{2} \mathrm{O}_{2}$. In SMAs $\mathrm{H}_{2} \mathrm{O}_{2}$ alone ($10 \mu \mathrm{M}, 30 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$) evoked significant vasoconstriction compared to the zero line ($P<0.02$). In the presence of $\mathrm{MPO}, \mathrm{H}_{2} \mathrm{O}_{2}$ caused significant vasoconstriction from $10 \mu \mathrm{M}-1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ compared to the control and the zero line ($P<0.05$, panel A) In CAs $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mu \mathrm{M}$ and $100 \mu \mathrm{M})$ and MPO evoked significant vasoconstriction comparing to the control $(P<0.05)$ which was not significant compared to the baseline (panel B) The arteriolar diameter was recorded and cumulative concentration-response relationships were determined. Changes in relative arteriolar diameter are shown. Values during vasodilations are expressed as percentages of the difference between the maximal passive diameter (maximal dilation (100%) in the absence of extracellular Ca^{2+}) and the initial diameter, while constriction is expressed as a percentage of the initial diameter (illustrated at 0\% on the y scale). Similarly, isolated BAs ($\mathrm{n}=5$ arterioles from 5 different animals) precontracted with KCl were incubated in the presence of MPO (activity: $1.92 \mathrm{mU} \mathrm{ml}^{-}$ $\left.{ }^{1}, 600 \mathrm{~s}\right)$. Arteries were exposed to the increasing concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mu \mathrm{M}-3$ mM , panel C). $\mathrm{H}_{2} \mathrm{O}_{2}$ evoked vasoconstriction was significant at $30 \mu \mathrm{M}$, whereas in the presence of MPO the vasoconstriction was significant at $10 \mu \mathrm{M}, 30 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2}$ compared to the baseline. MPO and $\mathrm{H}_{2} \mathrm{O}_{2}$ caused significant vasoconstriction compared to the control (10, 30 and $100 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2}$ panel C). The contractile forces
are indicated in absolute values, as differences from the initial baseline force. Asterisks denote significant differences from the control $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ without MPO).

Figure 2. HOCI mediates the vasoconstriction evoked by MPO in the SMAs
MPO induced vasoconstriction was inhibited with the MPO inhibitor 4aminobenzhydrazide ($50 \mu \mathrm{M}$) (id: $182 \pm 8 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 4 different animals; closed triangles), however significant vasoconstriction was still observed at $100 \mu \mathrm{M}$ and $300 \mu \mathrm{M}(P<0.05)$ compared to the baseline Panel A$) .100 \mu \mathrm{M}$ L-Met converted the MPO-induced vasoconstriction to vasodilation (id: $115 \pm 19 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 5 different animals; closed squares). Open circles represent the effects of $\mathrm{H}_{2} \mathrm{O}_{2}$ alone, while closed circles illustrate the effects of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of MPO. Asterisks denote significant differences from the MPO, and crosses significant differences between MPO+MPO inhibitor and MPO+L-Met. The effects of MPO alone and in combination with the MPO inhibitor or L-Met in the presence of $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ (control) on the vascular diameter in the SMAs (Panel B). The $\mathrm{H}_{2} \mathrm{O}_{2}$-induced biphasic response did not change in the presence of $100 \mu \mathrm{M}$ L-Met (id: $120 \pm 14 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 5 different animals; closed squares, but it caused significant vasoconstriction relative to the zero line at $10 \mu \mathrm{M}$ and $30 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$; Panel C). Increasing concentrations of L-Met inhibited the chlorinating activity of MPO in a concentration-dependent manner (100\%: maximal activity without L-Met, Panel D).

Figure 3. Effects of L-Met on the MPO-mediated vascular effects in different arteriolar beds

Increasing concentrations of L-Met (20, 40 or $100 \mu \mathrm{M}$) inhibited the MPO-mediated vasoconstriction in the SMAs in concentration-dependent manner (ld: $175 \pm 24 \mu \mathrm{~m}$, $\mathrm{n}=6$ arterioles from 4 different animals, with $20 \mu \mathrm{M}$ L-Met, (closed triangles); id:
$143 \pm 13 \mu \mathrm{~m}, \mathrm{n}=4$ arterioles from 4 different animals, with $40 \mu \mathrm{M}$ L-methionine, (open triangles), id: $115 \pm 19 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 5 different animals, with $100 \mu \mathrm{M}$ L-Met (open squares). MPO and $20 \mu \mathrm{M}$ L-methionin evoked significant vasoconstriction at $10 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ compared to the baseline; Panel A). The effects of MPO alone and in combination with increasing L-Met concentrations in the presence of $300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ (control) on the vascular diameter in the SMAs (Panel B). In the CAs L-Met ($100 \mu \mathrm{M}$; open squares) inhibited the MPO-evoked vasoconstriction only at a higher concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ (id: $73 \pm 10 \mu \mathrm{~m} n=4$ arterioles from 4 different animals). Asterisks denote significant differences from MPO (Panel C). The effects of MPO alone and in combination with $100 \mu \mathrm{M}$ L-Met in the presence of $300 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ (control) on the vascular diameter in the CAs (Panel D). L-Met (100 $\mu \mathrm{M}$; open squares) did not significantly influence the MPO-evoked changes in the isometric force in the BAs compared to the control ($\mathrm{n}=6$ arterioles from 3 different animals, Panel E), but comparing to the zero line MPO together with L-met caused significant vasoconstriction at $30 \mu \mathrm{M}$ and $100 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}(P=<0.05)$. The effects of MPO alone and in combination with $100 \mu \mathrm{M} \mathrm{L-Met} \mathrm{in} \mathrm{the} \mathrm{presence} \mathrm{of} 300 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2}$ (control) on the vascular diameter in the BAs (Panel F).

Figure 4. The mechanism of MPO-induced vasoconstriction in the SMAs
$\mathrm{H}_{2} \mathrm{O}_{2}$-evoked vasoconstriction (open circles; control) was abolished after endothelium denudation (id: $138 \pm 10 \mu \mathrm{~m}, \mathrm{n}=4$ arterioles from 4 different animals; closed diamonds, Panel A). However, in the presence of MPO , and at relatively low $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations, vasoconstrictions (significant vasoconstriction at $10 \mu \mathrm{M}-100 \mu \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2}$ compared to the baseline; $\mathrm{P}<0.05$). were still observed in the absence of endothelium (id: $172 \pm 7 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 4 different arterioles; open triangles). Closed circles illustrate the effects of MPO. Asterisks denote significant differences
from the action of MPO in the presence and absence of endothelium, and crosses indicate significant differences between the endothelium removal and the control. The MPO and $\mathrm{H}_{2} \mathrm{O}_{2}$-induced vasoconstriction was tested in the presence of the TXA2 receptor antagonist (id: $142 \pm 13 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 4 different animals; closed triangles, Panel B) and in the presence of the COX inhibitor (id: $168 \pm 8 \mu \mathrm{~m}, \mathrm{n}=5$ arterioles from 3 different animals; open triangles, Panel C). Asterisks denote significant differences from MPO.

Figure 5. COX-1 isoenzyme is present in the vascular endothelial and smooth muscle cells in the SMAs

The presence of COX-1 isoenzyme in the vascular smooth muscle cells and in the vascular endothelium was confirmed by immunohistochemistry. Smooth muscle actin is labeled in green, COX in red, and nuclei in blue (from top to bottom). Control images (without primary antibodies) are indicated in the right-hand column.

Figure 6. MPO increases the Ca^{2+} sensitivity of force production in the vascular smooth muscle cells

The changes in intracellular Ca^{2+} levels ($\mathrm{F}_{340 / 380}$ signals) and external arteriolar diameters were studied in SMAs under control conditions (id: $297 \pm 9 \mu \mathrm{~m}, \mathrm{n}=7$ arterioles from 6 different animals; panel \mathbf{A}), or after treatment with norepinephrine (id: $314 \pm 16 \mu \mathrm{~m}, \mathrm{n}=7$ arterioles from 6 different animals; panel B). Asterisks denote significant differences from the initial values.

Figure 7. A proposed mechanism for the vascular effects of MPO in the SMA
During its anti-inflammatory activity, MPO modulates the vascular action of $\mathrm{H}_{2} \mathrm{O}_{2}$. The release of MPO causes the production of hypochlorous acid (HOCl), which increases
the generation of thromboxane A2 (TXA2) both in endothelial cells and in vascular smooth muscle cells, leading to vascoconstriction through a Ca^{2+}-sensitizing mechanism in vascular smooth muscle cells. An MPO inhibitor prevents both the peroxidation and the chlorinating activity, while L-Met inhibits only the chlorinating activity of the enzyme. In the presence of L-Met, the peroxidation pathway is still functional and vasodilation is observed, probably due to the generation of a vasodilatative peroxidation product (marked by a question mark).

