353 research outputs found

    A System-driven Automatic Ground Truth Generation Method for DL Inner-City Driving Corridor Detectors

    Full text link
    Data-driven perception approaches are well-established in automated driving systems. In many fields even super-human performance is reached. Unlike prediction and planning approaches, mainly supervised learning algorithms are used for the perception domain. Therefore, a major remaining challenge is the efficient generation of ground truth data. As perception modules are positioned close to the sensor, they typically run on raw sensor data of high bandwidth. Due to that, the generation of ground truth labels typically causes a significant manual effort, which leads to high costs for the labelling itself and the necessary quality control. In this contribution, we propose an automatic labeling approach for semantic segmentation of the drivable ego corridor that reduces the manual effort by a factor of 150 and more. The proposed holistic approach could be used in an automated data loop, allowing a continuous improvement of the depending perception modules.Comment: 8 page

    Reciprocal t(9;22) ABL/BCR fusion proteins: leukemogenic potential and effects on B cell commitment

    Get PDF
    Background: t(9;22) is a balanced translocation, and the chromosome 22 breakpoints (Philadelphia chromosome – Ph+) determine formation of different fusion genes that are associated with either Ph+ acute lymphatic leukemia (Ph+ ALL) or chronic myeloid leukemia (CML). The "minor" breakpoint in Ph+ ALL encodes p185BCR/ABL from der22 and p96ABL/BCR from der9. The "major" breakpoint in CML encodes p210BCR/ABL and p40ABL/BCR. Herein, we investigated the leukemogenic potential of the der9-associated p96ABL/BCR and p40ABL/BCR fusion proteins and their roles in the lineage commitment of hematopoietic stem cells in comparison to BCR/ABL. Methodology: All t(9;22) derived proteins were retrovirally expressed in murine hematopoietic stem cells (SL cells) and human umbilical cord blood cells (UCBC). Stem cell potential was determined by replating efficiency, colony forming - spleen and competitive repopulating assays. The leukemic potential of the ABL/BCR fusion proteins was assessed by in a transduction/transplantation model. Effects on the lineage commitment and differentiation were investigated by culturing the cells under conditions driving either myeloid or lymphoid commitment. Expression of key factors of the B-cell differentiation and components of the preB-cell receptor were determined by qRT-PCR. Principal Findings: Both p96ABL/BCR and p40ABL/BCR increased proliferation of early progenitors and the short term stem cell capacity of SL-cells and exhibited own leukemogenic potential. Interestingly, BCR/ABL gave origin exclusively to a myeloid phenotype independently from the culture conditions whereas p96ABL/BCR and to a minor extent p40ABL/BCR forced the B-cell commitment of SL-cells and UCBC. Conclusions/Significance: Our here presented data establish the reciprocal ABL/BCR fusion proteins as second oncogenes encoded by the t(9;22) in addition to BCR/ABL and suggest that ABL/BCR contribute to the determination of the leukemic phenotype through their influence on the lineage commitment

    p185(BCR/ABL) has a lower sensitivity than p210(BCR/ABL) to the allosteric inhibitor GNF-2 in Philadelphia chromosome-positive acute lymphatic leukemia

    Get PDF
    Background: The t(9;22) translocation leads to the formation of the chimeric breakpoint cluster region/c-abl oncogene 1 (BCR/ABL) fusion gene on der22, the Philadelphia chromosome. The p185(BCR/ABL) or the p210(BCR/ABL) fusion proteins are encoded as a result of the translocation, depending on whether a "minor" or "major" breakpoint occurs, respectively. Both p185(BCR/ABL) and p210(BCR/ABL) exhibit constitutively activated ABL kinase activity. Through fusion to BCR the ABL kinase in p185(BCR/ABL) and p210(BCR/ABL) "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. A novel class of compounds including GNF-2 restores allosteric inhibition of the kinase activity and the transformation potential of BCR/ABL. Here we investigated whether there are differences between p185(BCR/ABL) and p210(BCR/ABL) regarding their sensitivity towards allosteric inhibition by GNF-2 in models of Philadelphia chromosome-positive acute lymphatic leukemia. Design and methods: We investigated the anti-proliferative activity of GNF-2 in different Philadelphia chromosome-positive acute lymphatic leukemia models, such as cell lines, patient-derived long-term cultures and factor-dependent lymphatic Ba/F3 cells expressing either p185(BCR/ABL) or p210(BCR/ABL) and their resistance mutants. Results: The inhibitory effects of GNF-2 differed constantly between p185(BCR/ABL) and p210(BCR/ABL) expressing cells. In all three Philadelphia chromosome-positive acute lymphatic leukemia models, p210(BCR/ABL)-transformed cells were more sensitive to GNF-2 than were p185BCR/ABL-positive cells. Similar results were obtained for p185(BCR/ABL) and the p210(BCR/ABL) harboring resistance mutations. Conclusions: Our data provide the first evidence of a differential response of p185(BCR/ABL)- and p210(BCR/ABL)- transformed cells to allosteric inhibition by GNF-2, which is of importance for the treatment of patients with Philadelphia chromosome-positive acute lymphatic leukemia

    Marktrisikoprämien am deutschen Kapitalmarkt : Ermittlung, Simulation und Vergleich historischer und angebotsseitiger Marktrisikoprämien

    Get PDF
    Die Diskussion über die richtige methodische Ableitung und Höhe der Marktrisikoprämie wurde durch die Finanzmarkt- und Staatsschuldenkrise neu entfacht. Während in Deutschland der Ansatz impliziter Kapitalkosten als Alternative zu historischen Marktrisikoprämien disku-tiert wird, wird in den USA zunehmend auf das Konzept der angebotsseitigen Marktrisiko-prämie verwiesen. Dieser Beitrag ermittelt erstmals angebotsseitige Marktrisikoprämien für den deutschen Kapitalmarkt. Darüber hinaus werden historische Marktrisikoprämien für den deutschen Kapitalmarkt in Abhängigkeit vom Beobachtungszeitraum simuliert. Darauf auf-bauend kann eine Einschätzung des Konzeptes der angebotsseitigen Marktrisikoprämie für den deutschen Kapitalmarkt erfolgen. Darüber hinaus ergeben sich neue Erkenntnisse zur Stabilität historischer Marktrisikoprämien am deutschen Kapitalmarkt

    Sulindac sulfide reverses aberrant self-renewal of progenitor cells induced by the AML-associated fusion proteins PML/RARalpha and PLZF/RARalpha

    Get PDF
    Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARalpha, PLZF/RARalpha, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARalpha and PLZF/RARalpha or AML-1/ETO activate Wnt signaling by upregulating gamma-catenin and beta-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARalpha-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both beta-catenin and gamma-catenin in X-RARalpha-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARalpha-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARalpha, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings

    Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I

    Get PDF
    Background: Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphatic leukemia (Ph + ALL) are caused by the t(9;22), which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs) Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the 'gatekeeper' mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. Methods: The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC) from Ph + ALL-patients. Results: Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. Conclusions: Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors

    Targeting the oligomerization of BCR/ABL by membrane permeable competitive peptides inhibits the proliferation of Philadelphia Chromosome positive leukemic cells

    Get PDF
    The BCR/ABL fusion protein is the hallmark of Philadelphia Chromosome positive (Ph+) leukemia. The constitutive activation of the ABL-kinase in BCR/ABL cells induces the leukemic phenotype. Targeted inhibition of BCR/ABL by small molecule inhibitors reverses the transformation potential of BCR/ABL. Recently, we definitively proved that targeting the tetramerization of BCR/ABL mediated by the N-terminal coiled-coil domain (CC) using competitive peptides, representing the helix-2 of the CC, represents a valid therapeutic approach for treating Ph+ leukemia. To further develop competitive peptides for targeting BCR/ABL, we created a membrane permeable helix-2 peptide (MPH-2) by fusing the helix-2 peptide with a peptide transduction tag. In this study, we report that the MPH-2: (i) interacted with BCR/ABL in vivo; (ii) efficiently inhibited the autophosphorylation of BCR/ABL; (iii) suppressed the growth and viability of Ph+ leukemic cells; and (iv) was efficiently transduced into mononuclear cells (MNC) in an in vivo mouse model. This study provides the first evidence that an efficient peptide transduction system facilitates the employment of competitive peptides to target the oligomerization interface of BCR/ABL in vivo

    Novel role of Ras-GTPase Activating Protein SH3 Domain-Binding Protein G3BP in adhesion and migration of 32D myeloid progenitor cells

    Get PDF
    Rho GTPases are involved in homing and mobilization of hematopoietic stem and progenitor cells due to their impact on cytoskeleton remodeling. We have previously shown that inhibition of Rho, Rac and Cdc42 clearly impairs adhesion of normal and leukemic hematopoietic progenitor cells (HPC) to fibronectin and migration in a three-dimensional stromal cell model. Here, we identified the Ras GTPase-Activating Protein SH3 Domain-Binding Protein (G3BP) as a target gene of Rho GTPases and analysed its role in regulating HPC motility. Overexpression of G3BP significantly enhanced adhesion of murine 32D HPC to fibronectin and human umbilical vein endothelial cells, increased the proportion of adherent cells in a flow chamber assay and promoted cell migration in a transwell assay and a three-dimensional stromal cell model suggesting a strong impact on the cytoskeleton. Immunofluorescent staining of G3BP-overexpressing fibroblasts revealed a Rho-like phenotype characterized by formation of actin stress fibers in contrast to the Rac-like phenotype of control fibroblasts. This is the first report implicating a role for G3BP in Rho GTPase-mediated signalling towards adhesion and migration of HPC. Our results may be of clinical importance, since G3BP was found overexpressed in human cancers
    • …
    corecore