39 research outputs found

    Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    Get PDF
    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology

    Photostimulation of Phox2b Medullary Neurons Activates Cardiorespiratory Function in Conscious Rats

    No full text
    Rationale: Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing

    Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats

    No full text
    To explore the specific contribution of the C1 neurons to blood pressure (BP) control, we used an optogenetic approach to activate these cells in vivo. A lentivirus that expresses channelrhodopsin-2 (ChR2) under the control of the catecholaminergic neuron-preferring promoter PRSx8 was introduced into the rostral ventrolateral medulla (RVLM). After 2–3 weeks, ChR2 was largely confined to Phox2b-expressing neurons (89%). The ChR2-expressing neurons were non-GABAergic, non-glycinergic and predominantly catecholaminergic (∼54%). Photostimulation of ChR2-transfected RVLM neurons (473 nm, 20 Hz, 10 ms, ∼9 mW) increased BP (15 mmHg) and sympathetic nerve discharge (SND; 64%). Light pulses at 0.2–0.5 Hz evoked a large sympathetic nerve response (16 × baseline) followed by a silent period (1–2 s) during which another stimulus evoked a reduced response. Photostimulation activated most (75%) RVLM baroinhibited neurons sampled with 1/1 action potential entrainment to the light pulses and without accommodation during 20 Hz trains. RVLM neurons unaffected by either CO2 or BP were light-insensitive. Bötzinger respiratory neurons were activated but their action potentials were not synchronized to the light pulses. Juxtacellular labelling of recorded neurons revealed that, of these three cell types, only the cardiovascular neurons expressed the transgene. In conclusion, ChR2 expression had no discernable effect on the putative vasomotor neurons at rest and was high enough to allow precise temporal control of their action potentials with light pulses. Photostimulation of RVLM neurons caused a sizable sympathoactivation and rise in blood pressure. These results provide the most direct evidence yet that the C1 neurons have a sympathoexcitatory function

    Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity

    No full text
    Breathing automaticity and COâ‚„ regulation are inseparable neural processes. The retrotrapezoid nucleus (RTN), a group of glutamatergic neurons that express the transcription factor Phox2b, may be a crucial nodal point through which breathing automaticity is regulated to maintain COâ‚„ constant. This review updates the analysis presented in prior publications. Additional evidence that RTN neurons have central respiratory chemoreceptor properties is presented, but this is only one of many factors that determine their activity. The RTN is also regulated by powerful inputs from the carotid bodies and, at least in the adult, by many other synaptic inputs. We also analyze how RTN neurons may control the activity of the downstream central respiratory pattern generator. Specifically, we review the evidence which suggests that RTN neurons (a) innervate the entire ventral respiratory column and (b) control both inspiration and expiration. Finally, we argue that the RTN neurons are the adult form of the parafacial respiratory group in neonate rats.10 page(s

    State-dependent Ras signaling and AMPA receptor trafficking

    Get PDF
    Synaptic trafficking of AMPA-Rs, controlled by small GTPase Ras signaling, plays a key role in synaptic plasticity. However, how Ras signals synaptic AMPA-R trafficking is unknown. Here we show that low levels of Ras activity stimulate extracellular signal-regulated kinase kinase (MEK)–p42/44 MAPK (extracellular signal-regulated kinase [ERK]) signaling, whereas high levels of Ras activity stimulate additional Pi3 kinase (Pi3K)–protein kinase B (PKB) signaling, each accounting for ∼50% of the potentiation during long-term potentiation (LTP). Spontaneous neural activity stimulates the Ras–MEK–ERK pathway that drives GluR2L into synapses. In the presence of neuromodulator agonists, neural activity also stimulates the Ras–Pi3K–PKB pathway that drives GluR1 into synapses. Neuromodulator release increases with increases of vigilance. Correspondingly, Ras–MEK–ERK activity in sleeping animals is sufficient to deliver GluR2L into synapses, while additional increased Ras–Pi3K–PKB activity in awake animals delivers GluR1 into synapses. Thus, state-dependent Ras signaling, which specifies downstream MEK–ERK and Pi3K–PKB pathways, differentially control GluR2L- and GluR1-dependent synaptic plasticity
    corecore