33 research outputs found

    Darstellung und funktionelle Charakterisierung von DNase I hypersensitiven Bereichen an der 5' Grenze des humanen Immunoglobulin λ Locus

    Get PDF

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau

    Get PDF
    *S Supporting Information ABSTRACT: Tau pathology in Alzheimer’s disease is intimately linked to the deposition of proteinacious filaments, which akin to infectious prions, have been proposed to spread via seeded conversion. Here we use double electron−electron resonance (DEER) spectroscopy in combination with extensive computational analysis to show that filaments of three- (3R) and four-repeat (4R) tau are conformationally distinct. Distance measurements between spin labels in the third repeat, reveal tau amyloid filaments as ensembles of known β-strand−turn−β-strand U-turn motifs. Whereas filaments seeded with 3R tau are structurally homogeneous, filaments seeded with 4R tau are heterogeneous, composed of at least three distinct conformers. These findings establish a molecular basis for the seeding barrier between different tau isoforms and offer a new powerful approach for investigating the composition and dynamics of amyloid fibril ensembles

    The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma

    Get PDF
    The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM

    International Study Group Progress Report On Linear Collider Development

    Get PDF

    The ubiquitin proteasome system — Implications for cell cycle control and the targeted treatment of cancer

    Get PDF
    AbstractTwo families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin–proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/CCdc20) and establishes a stable G1 phase (APC/CCdh1). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf

    Detection of Chemical Engagement of Solute Carrier Proteins by a Cellular Thermal Shift Assay

    No full text
    Solute carriers (SLCs) are transmembrane proteins that transport various nutrients, metabolites, and drugs across cellular membranes. Despite the relevance of SLCs to cell homeostasis, metabolism, and disease states, for the majority of SLCs we lack experimental evidence regarding the nature of the cognate ligands, whether endobiotic or xenobiotic. Moreover, even for the roughly 20 SLCs for which inhibitors have been characterized, engagement assays in cells are limited to the accessibility of radiolabeled or fluorescent probes. The cellular thermal shift assay (CETSA) has been introduced as a powerful method to assess target engagement by monitoring ligand-induced changes in the thermal stability of cellular proteins. We addressed the question of whether CETSA could be modified to become routinely applicable to membrane transporters such as SLCs. We used SLC16A1 (MCT1) and SLC1A2 (EAAT2) as targets to establish robust conditions by which chemical engagement of SLCs can be detected. Using immunoblotting, we demonstrate that treatment with the SLC16A1 inhibitors AZD3965 and AR-C155858 stabilized endogenous SLC16A1 in HEK293 cell lysates as well as intact cells. In addition, the high-affinity ligand of SLC16A1, l-lactate, and the low-affinity ligand, formate, resulted in strong and weak stabilization of SLC16A1, respectively. Moreover, we observed stabilization of SLC1A2 upon treatment with the selective inhibitor WAY-213613. We propose that the experimental approach presented here should be generally and easily applicable for monitoring the engagement of chemical ligands by SLCs in cellular settings and thus assisting in their deorphanization
    corecore