18 research outputs found

    Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension

    Get PDF
    Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target

    Conducting Environmental Health Research in the Arabian Middle East: Lessons Learned and Opportunities

    Get PDF
    Background: The Arabian Gulf nations are undergoing rapid economic development, leading to major shifts in both the traditional lifestyle and the environment. Although the pace of change is brisk, there is a dearth of environmental health research in this region

    Heading Down the Wrong Pathway: on the Influence of Correlation within Gene Sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of microarray experiments often involves testing for the overrepresentation of pre-defined sets of genes among lists of genes deemed individually significant. Most popular gene set testing methods assume the independence of genes within each set, an assumption that is seriously violated, as extensive correlation between genes is a well-documented phenomenon.</p> <p>Results</p> <p>We conducted a meta-analysis of over 200 datasets from the Gene Expression Omnibus in order to demonstrate the practical impact of strong gene correlation patterns that are highly consistent across experiments. We show that a common independence assumption-based gene set testing procedure produces very high false positive rates when applied to data sets for which treatment groups have been randomized, and that gene sets with high internal correlation are more likely to be declared significant. A reanalysis of the same datasets using an array resampling approach properly controls false positive rates, leading to more parsimonious and high-confidence gene set findings, which should facilitate pathway-based interpretation of the microarray data.</p> <p>Conclusions</p> <p>These findings call into question many of the gene set testing results in the literature and argue strongly for the adoption of resampling based gene set testing criteria in the peer reviewed biomedical literature.</p

    Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH

    Non-alcoholic fatty liver disease-associated DNA methylation and gene expression alterations in the livers of Collaborative Cross mice fed an obesogenic high-fat and high-sucrose diet

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease, and patient susceptibility to its onset and progression is influenced by several factors. In this study, we investigated whether altered hepatic DNA methylation in liver tissue correlates with the degree of severity of NAFLD-like liver injury induced by a high-fat and high-sucrose (HF/HS) diet in Collaborative Cross (CC) mice. Using genome-wide targeted bisulphite DNA methylation next-generation sequencing, we found that mice with different non-alcoholic fatty liver (NAFL) phenotypes could be distinguished by changes in hepatic DNA methylation profiles. Specifically, NAFL-prone male CC042 mice exhibited more prominent DNA methylation changes compared with male CC011 mice and female CC011 and CC042 mice that developed only a mild NAFL phenotype. Moreover, these mouse strains demonstrated different patterns of DNA methylation. While the HF/HS diet induced both DNA hypomethylation and DNA hypermethylation changes in all the mouse strains, the NAFL-prone male CC042 mice demonstrated a global predominance of DNA hypermethylation, whereas a more pronounced DNA hypomethylation pattern developed in the mild-NAFL phenotypic mice. In a targeted analysis of selected genes that contain differentially methylated regions (DMRs), we identified NAFL phenotype-associated differences in DNA methylation and gene expression of the Apoa4, Gls2, and Apom genes in severe NAFL-prone mice but not in mice with mild NAFL phenotypes. These changes in the expression of Apoa4 and Gls2 coincided with similar findings in a human in vitro cell model of diet-induced steatosis and in patients with NAFL. These results suggest that changes in the expression and DNA methylation status of these three genes may serve as a set of predictive markers for the development of NAFLD

    Concordance between sites of tumor development in humans and in experimental animals for 111 agents that are carcinogenic to humans

    No full text
    Since the inception of the IARC Monographs Programme in the early 1970s, this Programme has developed 119 Monograph Volumes on more than 1000 agents for which there exists some evidence of cancer risk to humans. Of these, 120 agents were found to meet the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs, compiled in 2008-2009 and published in 2012, provided a review and update of the 107 Group 1 agents identified as of 2009. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. The Group I agents reviewed in Volume 100, as well as five additional Group 1 agents defined in subsequent Volumes of the Monographs, were used to assess the degree of concordance between sites where tumors originate in humans and experimental animals including mice, rats, hamsters, dogs, and non-human primates using an anatomically based tumor nomenclature system, representing 39 tumor sites and 14 organ and tissue systems. This evaluation identified 91 Group 1 agents with sufficient evidence (82 agents) or limited evidence (9 agents) of carcinogenicity in animals. The most common tumors observed in both humans and animals were those of the respiratory system including larynx, lung, and lower respiratory tract. In humans, respiratory system tumors were noted for 31 of the 111 distinct Group 1 carcinogens identified up to and including Volume 109 of the IARC Monographs, comprising predominantly 14 chemical agents and related occupations in category VI; seven arsenic, metals, fibers, and dusts in category III, and five personal habits and indoor combustions in category V. Subsequent to respiratory system tumors, those in lymphoid and hematopoietic tissues (26 agents), the urothelium (18 agents), and the upper aerodigestive tract (16 agents) were most often seen in humans, while tumors in digestive organs (19 agents), skin (18 agents), and connective tissues (17 agents) were frequently seen in animals. Exposures to radiation, particularly X- and gamma-radiation, and tobacco smoke were associated with tumors at multiple sites in humans. Although the IARC Monographs did not emphasize tumor site concordance between animals and humans, substantial concordance was detected for several organ and tissue systems, even under the stringent criteria for sufficient evidence of carcinogenicity used by IARC. Of the 60 agents for which at least one tumor site was identified in both humans and animals, 52 (87%) exhibited tumors in at least one of the same organ and tissue systems in humans and animals. It should be noted that some caution is needed in interpreting concordance at sites where sample size is particularly small. Although perfect (100%) concordance was noted for agents that induce tumors of the mesothelium, only two Group 1 agents that met the criteria for inclusion in the concordance analysis caused tumors at this site. Although the present analysis demonstrates good concordance between animals and humans for many, but not all, tumor sites, limitations of available data may result in underestimation of concordance

    Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus-associated hepatocellular carcinoma

    No full text
    These results support the hypothesis that HCV-induced inflammation causes oxidative DNA damage and promotes hepatocarcinogenesis which directly affects the clinical outcome. Since patients with greater intra-hepatic oxidative stress had a higher incidence of HCC recurrence, we suggest that oxidative stress biomarkers could potentially be used as a useful clinical diagnostic tool to predict the duration of disease-free survival in patients with HCV-associated HCC
    corecore