13,304 research outputs found

    Unforeseen high temperature and humidity stability of FeCl3_3 intercalated few layer graphene

    Get PDF
    We present the first systematic study of the stability of the structure and electrical properties of FeCl3_3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforeseen stability of this transparent conductor to a relative humidity up to 100%100 \% at room temperature for 25 days, to a temperature up to 150\,^\circC in atmosphere and up to a temperature as high as 620\,^\circC in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl3_3 intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications.Comment: Scientific Reports, volume 5, article no. 760

    Two Dimensional Quantum Dilaton Gravity and the Positivity of Energy

    Full text link
    Using an argument due to Regge and Teitelboim, an expression for the ADM mass of 2d quantum dilaton gravity is obtained. By evaluating this expression we establish that the quantum theories which can be written as a Liouville-like theory, have a lower bound to energy, provided there is no critical boundary. This fact is then reconciled with the observation made earlier that the Hawking radiation does not appear to stop. The physical picture that emerges is that of a black hole in a bath of quantum radiation. We also evaluate the ADM mass for the models with RST boundary conditions and find that negative values are allowed. The Bondi mass of these models goes to zero for large retarded times, but becomes negative at intermediate times in a manner that is consistent with the thunderpop of RST.Comment: 16 pages, phyzzx, COLO-HEP-309. (Confusing points in previous version clarified, discussion of ADM and Bondi masses in RST case added.

    PMH40: ACCESS TO NEW MEDICATIONS TO TREAT SCHIZOPHRENIA

    Get PDF

    Towards Quantum Cosmology without Singularities

    Get PDF
    In this paper we investigate the vanishing of cosmological singularities by quantization. Starting from a 5d Kaluza--Klein approach we quantize, as a first step, the non--spherical metric part and the dilaton field. These fields which are classically singular become smooth after quantization. In addition, we argue that the incorporation of non perturbative quantum corrections form a dilaton potential. Technically, the procedure corresponds to the quantization of 2d dilaton gravity and we discuss several models. From the 4d point of view this procedure is a semiclassical approach where only the dilaton and moduli matter fields are quantized.Comment: 9 pages, 2 figures, Latex, epsfig.sty, epsf.te

    A theory of quantum black holes: non-perturbative corrections and no-veil conjecture

    Get PDF
    A common belief is that further quantum corrections near the singularity of a large black hole should not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper we explore a possible counterexample: in the context of dilaton gravity, we find that non-perturbative quantum corrections which are important in strong coupling regions may completely alter the semiclassical picture, to the extent that the presumptive space-like boundary becomes time-like, changing in this way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total energy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times and there is no information loss problem. Thus we propose that this may constitute a general characteristic of quantum black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons. We argue that this is not unnatural from the viewpoint of quantum mechanics.Comment: 24 pages, 12 figures (not included, available by request), UTTG-22-9

    Supersymmetry and Positive Energy in Classical and Quantum Two-Dimensional Dilaton Gravity

    Get PDF
    An N=1N = 1 supersymmetric version of two dimensional dilaton gravity coupled to matter is considered. It is shown that the linear dilaton vacuum spontaneously breaks half the supersymmetries, leaving broken a linear combination of left and right supersymmetries which squares to time translations. Supersymmetry suggests a spinorial expression for the ADM energy MM, as found by Witten in four-dimensional general relativity. Using this expression it is proven that M{M} is non-negative for smooth initial data asymptotic (in both directions) to the linear dilaton vacuum, provided that the (not necessarily supersymmetric) matter stress tensor obeys the dominant energy condition. A {\it quantum} positive energy theorem is also proven for the semiclassical large-NN equations, despite the indefiniteness of the quantum stress tensor. For black hole spacetimes, it is shown that MM is bounded from below by e−2ϕHe^{- 2 \phi_H}, where ϕH\phi_H is the value of the dilaton at the apparent horizon, provided only that the stress tensor is positive outside the apparent horizon. This is the two-dimensional analogue of an unproven conjecture due to Penrose. Finally, supersymmetry is used to prove positive energy theorems for a large class of generalizations of dilaton gravity which arise in consideration of the quantum theory.Comment: 21 page

    Black Hole Formation by Sine-Gordon Solitons in Two-dimensional Dilaton Gravity

    Get PDF
    The CGHS model of two-dimensional dilaton gravity coupled to a sine-Gordon matter field is considered. The theory is exactly solvable classically, and the solutions of a kink and two-kink type solitons are studied in connection with black hole formation.Comment: 11 pages, no figures, revte

    The Stretched Horizon and Black Hole Complementarity

    Full text link
    Three postulates asserting the validity of conventional quantum theory, semi-classical general relativity and the statistical basis for thermodynamics are introduced as a foundation for the study of black hole evolution. We explain how these postulates may be implemented in a ``stretched horizon'' or membrane description of the black hole, appropriate to a distant observer. The technical analysis is illustrated in the simplified context of 1+1 dimensional dilaton gravity. Our postulates imply that the dissipative properties of the stretched horizon arise from a course graining of microphysical degrees of freedom that the horizon must possess. A principle of black hole complementarity is advocated. The overall viewpoint is similar to that pioneered by 't~Hooft but the detailed implementation is different.Comment: (some misprints in equations have been fixed), 48 pages (including figures), SU-ITP-93-1

    Quantum Theories of Dilaton Gravity

    Full text link
    Quantization of two-dimensional dilaton gravity coupled to conformal matter is investigated. Working in conformal gauge about a fixed background metric, the theory may be viewed as a sigma model whose target space is parameterized by the dilaton ϕ\phi and conformal factor ρ\rho. A precise connection is given between the constraint that the theory be independent of the background metric and conformal invariance of the resulting sigma model. Although the action is renormalizable, new coupling constants must be specified at each order in perturbation theory in order to determine the quantum theory. These constants may be viewed as initial data for the beta function equations. It is argued that not all choices of this data correspond to physically sensible theories of gravity, and physically motivated constraints on the data are discussed. In particular a recently constructed subclass of initial data which reduces the full quantum theory to a soluble Liouville-like theory has energies unbounded from below and thus is unphysical. Possibilities for modifying this construction so as to avoid this difficulty are briefly discussed.Comment: 20 pages (Major additions made, including 5 pages on the relation between conformal invariance and background independence.

    Current status of laboratory and imaging diagnosis of neonatal necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis continues to be a devastating disease process for very low birth weight infants in Neonatal Intensive Care Units. The aetiology and pathogenesis of necrotizing enterocolitis are not definitively understood. It is known that necrotizing enterocolitis is secondary to a complex interaction of multiple factors that results in mucosal damage, which leads to intestinal ischemia and necrosis. Advances in neonatal care, including resuscitation and ventilation support technology, have seen increased survival rates among premature neonates and a concomitant detection in the incidence of this intestinal disease.Diagnosis can be difficult, and identifying infants at the onset of disease remains a challenge. Early diagnosis, which relies on imaging findings, and initiation of prompt therapy are essential to limit morbidity and mortality. Moreover, early management is critical and life-saving.This review summarizes what is known on the laboratory and instrumental diagnostic strategies needed to improve neonatal outcomes and, possibily, to prevent the onset of an overt necrotizing enterocolitis
    • 

    corecore