1,020 research outputs found

    Radiometer for the Investigation of Infrared Emissions from Flames and Rocket Plumes

    Get PDF
    A prototypical radiometer using standard one inch interference filters and a lead selenide detector was constructed for use in flame and rocket plume studies. This radiometer was designed to employ a 600 Hz chopper and chopper frequency/phase reference circuit for signal processing. Bandpass filters centered for either 2.7 mum or 4.45 mum were placed in the optical path. The passed carbon dioxide or water vapor band energy irradiated the lead selenide detector, resulting in an output voltage. This signal was then fed into a dedicated synchronous detector. The signal was then recorded by a computer system equipped with an analog-to-digital converter board. Infrared emission data was collected from two inch rocket motors and from a special burner based flame

    A Francisella tularensis Live Vaccine Strain That Improves Stimulation of Antigen-Presenting Cells Does Not Enhance Vaccine Efficacy

    Get PDF
    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system

    Error mitigation, optimization, and extrapolation on a trapped ion testbed

    Full text link
    Current noisy intermediate-scale quantum (NISQ) trapped-ion devices are subject to errors around 1% per gate for two-qubit gates. These errors significantly impact the accuracy of calculations if left unchecked. A form of error mitigation called Richardson extrapolation can reduce these errors without incurring a qubit overhead. We demonstrate and optimize this method on the Quantum Scientific Computing Open User Testbed (QSCOUT) trapped-ion device to solve an electronic structure problem. We explore different methods for integrating this error mitigation technique into the Variational Quantum Eigensolver (VQE) optimization algorithm for calculating the ground state of the HeH+ molecule at 0.8 Angstrom. We test two methods of scaling noise for extrapolation: time-stretching the two-qubit gates and inserting two-qubit gate identity operations into the ansatz circuit. We find the former fails to scale the noise on our particular hardware. Scaling our noise with global gate identity insertions and extrapolating only after a variational optimization routine, we achieve an absolute relative error of 0.363% +- 1.06 compared to the true ground state energy of HeH+. This corresponds to an absolute error of 0.01 +- 0.02 Hartree; outside chemical accuracy, but greatly improved over our non error mitigated estimate. We ultimately find that the efficacy of this error mitigation technique depends on choosing the right implementation for a given device architecture and sampling budget.Comment: 16 pages, 11 figure

    Closed String Tachyon Condensation on Twisted Circles

    Full text link
    We study IIA/B string theory compactified on twisted circles. These models possess closed string tachyons and reduce to type 0B/A theory in a special limit. Using methods of gauged linear sigma models and mirror symmetry we construct a conformal field theory which interpolates between these models and flat space via an auxiliary Liouville direction. Interpreting motion in the Liouville direction as renormalization group flow, we argue that the end point of tachyon condensation in all these models (including 0B/A theory) is supersymmetric type II theory. We also find a zero-slope limit of these models which is best described in a T-dual picture as a type II NS-NS fluxbrane. In this limit tachyon condensation is an interesting and well posed problem in supergravity. We explicitly determine the tachyon as a fluctuation of supergravity fields, and perform a rudimentary numerical analysis of the relevant flows.Comment: 21 pages plus appendices (12 pages), harvmac, 1 fig, v2: minor changes and references added, v3: minor changes version published in JHE

    Blocking Zika virus vertical transmission.

    Get PDF
    The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity

    A Soluble String Theory of Hadrons

    Get PDF
    We consider Penrose limits of the Klebanov-Strassler and Maldacena-Nunez holographic duals to N =1 supersymmetric Yang-Mills. By focusing in on the IR region we obtain exactly solvable string theory models. These represent the nonrelativistic motion and low-lying excitations of heavy hadrons with mass proportional to a large global charge. We argue that these hadrons, both physically and mathematically, take the form of heavy nonrelativistic strings; we term them "annulons." A simple toy model of a string boosted along a compact circle allows us considerable insight into their properties. We also calculate the Wilson loop carrying large global charge and show the effect of confinement is quadratic, not linear, in the string tension.Comment: 40 pages, 1 figure; v2: typos correcte

    A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau)

    Get PDF
    Despite its assumed global nature, there are very few detailed stratigraphic records of the late Cenomanian to the early Turonian Oceanic Anoxic Event 2 from the Southern Hemisphere. A highly resolved record of environmental changes across the Cenomanian\u2013Turonian boundary interval is presented from Ocean Drilling Program Site 1138 on the central Kerguelen Plateau (southern Indian Ocean). The new data lead to three key observations. Firstly, detailed biostratigraphy and chemostratigraphy indicate that the record of Oceanic Anoxic Event 2 is not complete, with a hiatus spanning the onset of the event. A decrease in glauconite and highly weathered clays after the onset of Oceanic Anoxic Event 2 marks the end of the hiatus interval, which can be explained by a relative sea-level rise that increased sediment accommodation space on the Kerguelen Plateau margin. This change in depositional environment controlled the timing of the delayed peak in organic-matter burial during Oceanic Anoxic Event 2 at Site 1138 compared with other Oceanic Anoxic Event 2 locations worldwide. A second key observation is the presence of cyclic fluctuations in the quantity and composition of organic matter being buried on the central Kerguelen Plateau throughout the latter stages of Oceanic Anoxic Event 2 and the early Turonian. A close correspondence between organic matter, sedimentary elemental compositions and sediments recording sea-floor oxygenation suggests that the cycles were mainly productivity-driven phenomena. Available age-control points constrain the periodicity of the coupled changes in sedimentary parameters to ca 20 to 70 ka, suggesting a link between carbon burial and astronomically forced climatic variations (precession or obliquity) in the Southern Hemisphere mid-latitudes both during, and after, Oceanic Anoxic Event 2: fluctuations that were superimposed on the impact of global-scale processes. Finally, trace-metal data from the black-shale unit at Site 1138 provide the first evidence from outside of the proto-North Atlantic region for a global drawdown of seawater trace-metal (Mo) inventories during Oceanic Anoxic Event 2

    Signatures of Short Distance Physics in the Cosmic Microwave Background

    Get PDF
    We systematically investigate the effect of short distance physics on the spectrum of temperature anistropies in the Cosmic Microwave Background produced during inflation. We present a general argument-assuming only low energy locality-that the size of such effects are of order H^2/M^2, where H is the Hubble parameter during inflation, and M is the scale of the high energy physics. We evaluate the strength of such effects in a number of specific string and M theory models. In weakly coupled field theory and string theory models, the effects are far too small to be observed. In phenomenologically attractive Horava-Witten compactifications, the effects are much larger but still unobservable. In certain M theory models, for which the fundamental Planck scale is several orders of magnitude below the conventional scale of grand unification, the effects may be on the threshold of detectability. However, observations of both the scalar and tensor fluctuation contributions to the Cosmic Microwave Background power spectrum-with a precision near the cosmic variance limit-are necessary in order to unambiguously demonstrate the existence of these signatures of high energy physics. This is a formidable experimental challenge.Comment: 49 pages, 2 figures. References added, minor typos correcte

    Factors and Situations Affecting the Value of Patient Preference Studies: Semi-Structured Interviews in Europe and the US

    Get PDF
    Objectives: Patient preference information (PPI) is gaining recognition among the pharmaceutical industry, regulatory authorities, and health technology assessment (HTA) bodies/payers for use in assessments and decision-making along the medical product lifecycle (MPLC). This study aimed to identify factors and situations that influence the value of patient preference studies (PPS) in decision-making along the MPLC according to different stakeholders. Methods: Semi-structured interviews (n = 143) were conducted with six different stakeholder groups (physicians, academics, industry representa
    • …
    corecore