828 research outputs found
Seeing The Forest Through The Trees: Considering Roost-Site Selection At Multiple Spatial Scales
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (\u3e30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns
Spectrum of statin hepatotoxicity: Experience of the drug‐induced liver injury network
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108111/1/hep27157.pd
Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance
Background & AimsDrug induced liver injury (DILI) is challenging because of the lack of biomarkers to predict mortality. Our aim was to describe miRNA changes in sera of subjects with acute idiosyncratic DILI and determine if levels of miRNAs were associated with 6 month mortality.MethodsClinical data and sera were collected from subjects enrolled in the Drug Induced Liver Injury Network prospective study. miRNAs were isolated from serum obtained from 78 subjects within 2 weeks of acute DILI and followed up for 6 months or longer. miRNAs were compared to 40 normal controls and 6 month survivors vs non‐survivors.ResultsThe mean age of the DILI cohort was 48 years, and 55% were female. Eleven (14.1%) subjects died, 10 within 6 months of DILI onset, 5 (45%) liver related. Lower levels of miRNAs‐122, ‐4463 and ‐4270 were associated with death within 6 months (P<.05). None of the subjects with miRNA‐122 greater than the median value died within 6 months for a sensitivity of 100% and specificity of 57%. In subjects with a serum albumin <2.8 g/dL and miR‐122<7.89 RFU the sensitivity, specificity, positive and negative predictive values for death within 6 months were 100%, 57%, 38% and 100% respectively.ConclusionsSerum miRNA‐122 combined with albumin accurately identified subjects who died within 6 months of drug induced liver injury. If confirmed prospectively, miRNA‐122 and albumin may be useful in identifying patients at high risk for mortality or liver transplantation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136681/1/liv13312_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136681/2/liv13312.pd
Acute liver failure due to natural killer-like T-cell leukemia/lymphoma: A case report and review of the Literature
Acute liver failure (ALF) is a medical emergency requiring immediate evaluation for liver transplantation. We describe an unusual case of a patient who presented with ascites, jaundice, and encephalopathy and was found to have ALF due to natural killer (NK)-like T cell leukemia/lymphoma. The key immunophenotype was CD2+, CD3+, CD7+, CD56+. This diagnosis, which was based on findings in the peripheral blood and ascitic fluid, was confirmed with liver biopsy, and was a contraindication to liver transplantation. A review of the literature shows that hematologic malignancies are an uncommon cause of fulminant hepatic failure, and that NK-like T-cell leukemia/lymphoma is a relatively recently recognized entity which is characteristically CD3+ and CD56+. This case demonstrates that liver biopsy is essential in diagnosing unusual causes of acute liver failure, and that infiltration of the liver with NK-like T-cell lymphoma/leukemia can cause acute liver failure
Liver Transplantation for Acute Liver Failure at 11-Week Gestation with Successful Maternal and Fetal Outcome
Acute liver failure (ALF) during pregnancy is very uncommon. Pregnancy-specific liver conditions like hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome and acute fatty liver of pregnancy can cause ALF at term or postpartum, but, typically occur during the third trimester. Most of these patients recover spontaneously after delivery, but, on occasion, they require liver transplantation in the postpartum period. However, ALF during the first and second trimester of pregnancy requiring antepartum liver transplantation is rare. Only fifteen cases of liver transplantation during pregnancy have been reported, and very few occurred during the first trimester. We report a Woman who developed acute liver failure during the first trimester of pregnancy and underwent successful liver transplantation at 11-week gestation, followed by successful delivery of the fetus at 30 weeks. To our knowledge, this is the earliest case of successful liver transplantation during pregnancy followed by successful fetal outcome. We discuss management of the patient and fetus before, during, and after liver transplantation and review the literature on antepartum liver transplant in pregnancy
Region 11 MELD Na Exception Prospective Study
Introduction. Hyponatremia complicates cirrhosis and predicts short term mortality, including adverse outcomes before and after liver transplantation. Material and methods. From April 1, 2008, through April 2, 2010, all adult candidates for primary liver transplantation with cirrhosis, listed in Region 11 with hyponatremia, were eligible for sodium (Na) exception. Results. Patients with serum sodium (SNa) less than 130 mg/dL, measured two weeks apart and within 30 days of Model for End Stage Liver Disease (MELD) exception request, were given preapproved Na exception. MELD Na was calculated [MELD + 1.59 (135-SNa/30 days)]. MELD Na was capped at 22, and subject to standard adult recertification schedule. On data end of follow-up, December 28, 2010, 15,285 potential U.S. liver recipients met the inclusion criteria of true MELD between 6 and 22. In Region 11, 1,198 of total eligible liver recipients were listed. Sixty-two (5.2%) patients were eligible for Na exception (MELD Na); 823 patients (68.7%) were listed with standard MELD (SMELD); and 313 patients (26.1%) received HCC MELD exception. Ninety percent of MELD Na patients and 97% of HCC MELD patients were transplanted at end of follow up, compared to 49% of Region 11 standard MELD and 40% of U.S.A. standard MELD (USA MELD) patients (p \u3c 0.001); with comparable dropout rates (6.5, 1.6, 6.9, 9% respectively; p = 0.2). MELD Na, HCC MELD, Region 11 SMELD, and USA MELD post-transplant six-month actual patient survivals were similar (92.9, 92.8, 92.2, and 93.9 %, respectively). Conclusion. The Region 11 MELD Na exception prospective trial improved hyponatremic cirrhotic patient access to transplant equitably, and without compromising transplant efficacy
Cultural Resource Survey of the United States Naval Academy Annapolis, Maryland
This report presents the results of the Legacy Resource Management Program,
Cultural Resource Management survey as it relates to the United States Naval Academy
(USNA) in Annapolis, Maryland. Sponsored by the United States Department of Defense
and managed through the Naval Facilities (CHESDIV), a multi-faceted project was initiated
by Archaeology In Annapolis, an on-going research project jointly sponsored by Historic
Annapolis Foundation, and the University of Maryland, College Park. The project was
comprised of an archaeological survey conducted over a 2 month period, title searches on
properties now occupied by the USNA, oral history interviews conducted with residents of a
former neighborhood purchased by the Academy, and the use of the AutoCAD computer
mapping program to assist with the archaeological survey and to potentially generate a
predictive model of where historic or prehistoric cultural resources may exist on USNA
property. Conclusions drawn from this study highlight the rich amount of cultural resources
which exist in the form of artifacts dating from the late-1700's, deeds information that shows
changing economic and social patterns throughout the 290 year history of the ground
occupied by the Academy, memories of individuals who lived through the expansion of the
Academy into their homes, and a series of maps which can be used to indicate the likelihood
of further cultural resources
Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis
Hepatic stellate cell (HSC) activation is a pivotal event in initiation and progression of hepatic fibrosis and a major contributor to collagen deposition driven by transforming growth factor beta (TGFβ). microRNAs (miRs), small non-coding RNAs modulating mRNA and protein expression, have emerged as key regulatory molecules in chronic liver disease. We investigated differentially expressed miRs in quiescent and activated HSCs to identify novel regulators of profibrotic TGFβ signaling. miR microarray analysis was performed on quiescent and activated rat HSCs. Members of the miR-17-92 cluster (19a, 19b, 92a) were significantly down-regulated in activated HSCs. Since miR 19b showed the highest fold-change of the cluster members, activated HSCs were transfected with miR 19b mimic or negative control and TGFβ signaling and HSC activation assessed. miR 19b expression was determined in fibrotic rat and human liver specimens. miR 19b mimic negatively regulated TGFβ signaling components demonstrated by decreased TGFβ receptor II (TGFβRII) and SMAD3 expression. Computational prediction of miR 19b binding to the 3’UTR of TGFβRII was validated by luciferase reporter assay. Inhibition of TGFβ signaling by miR 19b was confirmed by decreased expression of type I collagen and by blocking TGFβ-induced expression of α1(I) and α2(I) procollagen mRNAs. miR 19b blunted the activated HSC phenotype by morphological assessment and decreased αSMA expression. Additionally, miR 19b expression was markedly diminished in fibrotic rat liver compared to normal liver; similarly, miR 19b expression was markedly down-regulated in fibrotic compared to normal human livers
Epidemiology and Cost of Nosocomial Gastroenteritis, Avon, England, 2002–2003
Implementing control measures rapidly may be effective in controlling gastroenteritis outbreaks
Structure of the fanconi anaemia monoubiquitin ligase complex
The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair
- …