5 research outputs found

    Deconvolution of Gas Diffusion Polarization in Ni/Gadolinium-Doped Ceria Fuel Electrodes

    Get PDF
    The deconvolution of physicochemical processes in impedance spectra of SOCs with nickel/ceria fuel electrodes is challenging as gas diffusion strongly overlaps with the electrochemical processes at fuel and air electrode. To overcome this issue, symmetrical cells were applied and the gas diffusion process at the fuel electrode was quantified by altering the inert component (nitrogen/helium) in a ternary fuel gas mixture. An effective gas transport parameter considering microstructural and geometrical features was derived, enabling a precise quantification of polarization resistances related to gas diffusion and hydrogen electrooxidation. The obtained values were applied to parameterize a dc cell model. The model validation in fuel cell and electrolyzer mode showed an excellent agreement between measured and simulated current/voltage characteristics over a wide range of technically meaningful gas compositions and operating temperatures
    corecore