39 research outputs found
Suitability of external controls for drug evaluation in Duchenne muscular dystrophy
OBJECTIVE: To evaluate the suitability of real-world data (RWD) and natural history data (NHD) for use as external controls in drug evaluations for ambulatory Duchenne muscular dystrophy (DMD). METHODS: The consistency of changes in the 6-minute walk distance (Δ6MWD) was assessed across multiple clinical trial placebo arms and sources of NHD/RWD. Six placebo arms reporting 48-week Δ6MWD were identified via literature review and represented 4 sets of inclusion/exclusion criteria (n = 383 patients in total). Five sources of RWD/NHD were contributed by Universitaire Ziekenhuizen Leuven, DMD Italian Group, The Cooperative International Neuromuscular Research Group, ImagingDMD, and the PRO-DMD-01 study (n = 430 patients, in total). Mean Δ6MWD was compared between each placebo arm and RWD/NHD source after subjecting the latter to the inclusion/exclusion criteria of the trial for baseline age, ambulatory function, and steroid use. Baseline covariate adjustment was investigated in a subset of patients with available data. RESULTS: Analyses included ∼1,200 patient-years of follow-up. Differences in mean Δ6MWD between trial placebo arms and RWD/NHD cohorts ranged from -19.4 m (i.e., better outcomes in RWD/NHD) to 19.5 m (i.e., worse outcomes in RWD/NHD) and were not statistically significant before or after covariate adjustment. CONCLUSIONS: We found that Δ6MWD was consistent between placebo arms and RWD/NHD subjected to equivalent inclusion/exclusion criteria. No evidence for systematic bias was detected. These findings are encouraging for the use of RWD/NHD to augment, or possibly replace, placebo controls in DMD trials. Multi-institution collaboration through the Collaborative Trajectory Analysis Project rendered this study feasible
Skeletal Muscles of Ambulant Children with Duchenne Muscular Dystrophy: Validation of Multicenter Study of Evaluation with MR Imaging and MR Spectroscopy
Purpose: To validate a multicenter protocol that examines lower extremity skeletal muscles of children with Duchenne muscular dystrophy (DMD) by using magnetic resonance (MR) imaging and MR spectroscopy in terms of reproducibility of these measurements within and across centers. Materials and Methods: This HIPAA-compliant study was approved by the institutional review boards of all participating centers, and informed consent was obtained from each participant or a guardian. Standardized procedures with MR operator training and quality assurance assessments were implemented, and data were acquired at three centers by using different 3-T MR imaging instruments. Measures of maximal cross-sectional area (CSA(max)), transverse relaxation time constant (T2), and lipid fraction were compared among centers in two-compartment coaxial phantoms and in two unaffected adult subjects who visited each center. Also, repeat MR measures were acquired twice on separate days in 30 boys with DMD (10 per center) and 10 unaffected boys. Coefficients of variation (CVs) were computed to examine the repeated-measure variabilities within and across centers. Results: CSA(max), T2 from MR imaging and MR spectroscopy, and lipid fraction were consistent across centers in the phantom (CV, \u3c 3%) and in the adult subjects who traveled to each site (CV, 2%-7%). High day-to-day reproducibility in MR measures was observed in boys with DMD (CSA(max), CV = 3.7% [25th percentile, 1.3%; 75th percentile, 5.1%]; contractile area, CV = 4.2% [25th percentile, 0.8%; 75th percentile, 4.9%]; MR imaging T2, CV = 3.1% [25th percentile, 1.2%; 75th percentile, 4.7%]; MR spectroscopy T2, CV = 3.9% [25th percentile, 1.5%; 75th percentile, 5.1%]; and lipid fraction, CV = 4.7% [25th percentile, 1.0%; 75th percentile, 5.3%]). Conclusion: The MR protocol implemented in this multicenter study achieved highly reproducible measures of lower extremity muscles across centers and from day to day in ambulatory boys with DMD
Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study.
IntroductionDuchenne muscular dystrophy (DMD) is an X-linked recessive disorder that results in functional deficits. However, these functional declines are often not able to be quantified in clinical trials for DMD until after age 7. In this study, we hypothesized that (1)H2O T2 derived using (1)H-MRS and MRI-T2 will be sensitive to muscle involvement at a young age (5-7 years) consistent with increased inflammation and muscle damage in a large cohort of DMD subjects compared to controls.MethodsMR data were acquired from 123 boys with DMD (ages 5-14 years; mean 8.6 SD 2.2 years) and 31 healthy controls (age 9.7 SD 2.3 years) using 3-Tesla MRI instruments at three institutions (University of Florida, Oregon Health & Science University, and Children's Hospital of Philadelphia). T2-weighted multi-slice spin echo (SE) axial images and single voxel 1H-MRS were acquired from the lower leg and thigh to measure lipid fraction and (1)H2O T2.ResultsMRI-T2, (1)H2O T2, and lipid fraction were greater (pDiscussionOverall, MR measures of T2 and lipid fraction revealed differences between DMD and Controls. Furthermore, MRI-T2 was greater in the older age group compared to the young age group, which was associated with higher lipid fractions. Overall, MR measures of T2 and lipid fraction show excellent sensitivity to DMD disease pathologies and potential therapeutic interventions in DMD, even in the younger boys