109 research outputs found

    Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures

    Get PDF
    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domainspolar and nonpolarthree stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment

    Mesoscopic structural organization in fluorinated pyrrolidinium based room temperature ionic liquids

    Get PDF
    In this contribution the microscopic and mesoscopic structural organization in a series of fluorinated room temperature ionic liquids, based on N-methyl-N-alkylpyrrolidinium cations and on bis(perfluoroalkylsulfonyl)imide anions, is investigated, using a synergy of experimental (X-ray and neutron scattering) and computational (Molecular Dynamics) techniques. The proposed ionic liquids are of high interest as electrolyte media for lithium battery applications. Together with information on their good ion transport properties in conjunction with low viscosity, we also describe the existence of nm-scale spatial organization induced by the segregation of fluorous moieties into domains. This study shows the strong complementarity between X-ray/neutron scattering in detecting the complex segregated morphology in these systems at mesoscopic spatial scales and MD simulations in successfully delivering a robust description of the segregated morphology at atomistic level

    Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion

    Get PDF
    Water-in-salt systems, i.e., super-concentrated aqueous electrolytes, such as lithium bis(trifluoromethanesulfonyl)imide (21 mol/kgwater), have been recently discovered to exhibit unexpectedly large electrochemical windows and high lithium transference numbers, thus paving the way to safe and sustainable charge storage devices. The peculiar transport features in these electrolytes are influenced by their intrinsically nanoseparated morphology, stemming from the anion hydrophobic nature and manifesting as nanosegregation between anions and water domains. The underlying mechanism behind this structure-dynamics correlation is, however, still a matter of strong debate. Here, we enhance the apolar nature of the anions, exploring the properties of the aqueous electrolytes of lithium salts with a strongly asymmetric anion, namely, (trifluoromethylsulfonyl)(nonafluorobutylsulfonyl) imide. Using a synergy of experimental and computational tools, we detect a remarkable level of structural heterogeneity at a mesoscopic level between anion-rich and water-rich domains. Such a ubiquitous sponge-like, bicontinuous morphology develops across the whole concentration range, evolving from large fluorinated globules at high dilution to a percolating fluorous matrix intercalated by water nanowires at super-concentrated regimes. Even at extremely concentrated conditions, a large population of fully hydrated lithium ions, with no anion coordination, is detected. One can then derive that the concomitant coexistence of (i) a mesoscopically segregated structure and (ii) fully hydrated lithium clusters disentangled from anion coordination enables the peculiar lithium diffusion features that characterize water-in-salt systems

    Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion

    Get PDF
    The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer

    Dynamic correlations around the glass transition in systems with different degrees of fragility

    No full text
    We have investigated two ionic salt systems with different degrees of fragility, Ca0.4K0.6(NO3)(1.4) (CKN) and ZnCl2, by cold-neutron spectroscopy. The spectra were studied in detail around the glass-transition temperatures. Harmonic vibrations dominate the dynamics in both systems below the glass transition. With increasing temperature a strong anharmonic additional intensity was observed in the picosecond range in both systems. The results of our study show correlations between the low-energy excitations and the degree of fragility: harmonic vibrations are better pronounced in less fragile systems, while the anharmonic picosecond dynamics are stronger in fragile glass-forming liquids

    Relaxation processes in room temperature ionic liquids: The case of 1-methyl-3-butyl imidazolium hexafluorophosphate

    Get PDF
    A detailed investigation on the nature of the relaxation processes occurring in a typical room temperature ionic liquid (RTIL), namely, 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF(6)]), is reported. The study was conducted using both elastic and inelastic neutron scattering over a wide temperature range from 10 to 400 K, accessing the dynamic features of both the liquid and glassy amorphous states. In this study, the inelastic fixed energy scan technique has been applied for the first time to this class of materials. Using this technique, the existence of two relaxation processes below the glass transition and a further diffusive process occurring above the glass-liquid transition are observed. The low temperature processes are associated with methyl group rotation and butyl chain relaxation in the glassy state and have been modeled in terms of two Debye-like, Arrhenius activated processes. The high temperature process has been modeled in terms of a Kohlraush-Williams-Watts relaxation, with a distinct Vogel-Fulcher-Tamman temperature dependence. These results provide novel information that will be useful in rationalizing the observed structural and dynamical behavior of RTILs in the amorphous state
    • …
    corecore