83 research outputs found

    Study of Optimal Perimetric Testing In Children (OPTIC): Normative visual field values in children

    Get PDF
    Purpose: We sought to define normative visual field (VF) values for children using common clinical test protocols for kinetic and static perimetry. Design: Prospective, observational study. Subjects: We recruited 154 children aged 5 to 15 years without any ophthalmic condition that would affect the VF (controls) from pediatric clinics at Moorfields Eye Hospital. Methods: Children performed perimetric assessments in a randomized order using Goldmann and Octopus kinetic perimetry, and Humphrey static perimetry (Swedish Interactive Thresholding Algorithm [SITA] 24-2 FAST), in a single sitting, using standardized clinical protocols, with assessment by a single examiner. Unreliable results (assessed qualitatively) were excluded from the normative data analysis. Linear, piecewise, and quantile mixed-effects regression models were used. We developed a method to display age-specific normative isopters graphically on a VF plot to aid interpretation. Main Outcome Measures: Summary measures and graphical plots describing normative VF data for 3 common perimetric tests. Results: Visual field area increased with age on testing with Goldmann isopters III4e, I4e, and I2e (linear regression; P < 0.001) and for Octopus isopters III4e and I4e (linear regression; P < 0.005). Visual field development occurs predominately in the infero-temporal field. Humphrey mean deviation (MD) showed an increase of 0.3 decibels (dB; 95% CI, 0.21-0.40) MD per year up to 12 years of age, when adult MD values were reached and thereafter maintained. Conclusions: Visual field size and sensitivity increase with age in patterns that are specific to the perimetric approach used. These developmental changes should be accounted for when interpreting perimetric test results in children, particularly when monitoring change over time

    Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)

    Get PDF
    INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children

    Supranuclear eye movements and nystagmus in children: A review of the literature and guide to clinical examination, interpretation of findings and age-appropriate norms.

    Get PDF
    Abnormal eye movements in children present a significant challenge to Ophthalmologists and other healthcare professionals. Similarly, examination of supra-nuclear eye movements in children and interpretation of any resulting clinical signs can seem very complex. A structured assessment is often lacking although in many cases, simple clinical observations, combined with a basic understanding of the underlying neurology, can hold the key to clinical diagnosis. As the range of underlying diagnoses for children with abnormal eye movements is broad, recognising clinical patterns and understanding their neurological basis is also imperative for ongoing management. Here we present a review and best practice guide for a structured, methodical clinical examination of supranuclear eye movements in children, a guide to clinical interpretation and age-appropriate norms. We also detail the more common specific clinical findings and how they should be interpreted and used to guide further management. In summary, this review will encourage clinicians to combine a structured assessment and a logical interpretation of the resulting clinical signs, in order to recognise patterns of presentation and avoid unnecessary investigations and protracted delays in diagnosis and clinical care

    Is early surgery for congenital cataract a risk factor for glaucoma?

    No full text
    Aims: To estimate the risk of aphakic glaucoma after lensectomy for congenital cataract and its association with surgery within the first month of life. Method: A retrospective case notes review was conducted of all patients who had lensectomy for congenital cataract during their first year of life at Great Ormond Street Hospital between 1994 and 1997. Patients with pre-existing glaucoma, anterior segment dysgenesis, and Lowe syndrome were excluded. The risk of aphakic glaucoma after surgery was estimated using Kaplan-Meier survival analysis. Results: 80 patients, undergoing 128 lensectomies were eligible. Of these, six patients (nine eyes) were lost to follow up. Based on eye count, the risk of glaucoma by 5 years after lensectomy was 15.6% (95% CI 10.2 to 23.4). Based on patient count, the 5 year risk of glaucoma in at least one eye following bilateral surgery was 25.1% (95% CI 15.1 to 40.0). The incidence of glaucoma remained at a constant level for the first 5 years after surgery. After early bilateral lensectomy, within the first month of life, the 5 year risk of glaucoma in at least one eye was 50% (95% CI 27.8 to 77.1) compared to 14.9% (95% CI 6.5 to 32.1) with surgery performed later (log rank test, pā€Š=ā€Š0.012). There was no significant difference (Kolmogorov-Smirnov test: unilateral lensectomy pā€Š=ā€Š0.587, bilateral lensectomy pā€Š=ā€Š0.369) in 5 year visual outcomes between eyes operated before and after 1 month of age. Conclusion: Bilateral lensectomy during the first month of life is associated with a higher risk of subsequent glaucoma than with surgery performed later. The reason for this is unclear but it may be prudent, in bilateral cases, to consider delaying surgery until the infant is 4 weeks old. As the incidence of glaucoma is similar for each year after surgery, long term glaucoma surveillance is mandatory
    • ā€¦
    corecore