2,559 research outputs found

    Lattice-based Succinct Arguments from Vanishing Polynomials

    Get PDF
    Succinct arguments allow a prover to convince a verifier of the validity of any statement in a language, with minimal communication and verifier\u27s work. Among other approaches, lattice-based protocols offer solid theoretical foundations, post-quantum security, and a rich algebraic structure. In this work, we present some new approaches to constructing efficient lattice-based succinct arguments. Our main technical ingredient is a new commitment scheme based on vanishing polynomials, a notion borrowed from algebraic geometry. We analyse the security of such a commitment scheme, and show how to take advantage of the additional algebraic structure to build new lattice-based succinct arguments. A few highlights amongst our results are: - The first recursive folding (i.e. Bulletproofs-like) protocol for linear relations with polylogarithmic verifier runtime. Traditionally, the verifier runtime has been the efficiency bottleneck for such protocols (regardless of the underlying assumptions). - The first verifiable delay function (VDF) based on lattices, building on a recently introduced sequential relation. - The first lattice-based \emph{linear-time prover} succinct argument for NP, in the preprocessing model. The soundness of the scheme is based on (knowledge)-k-R-ISIS assumption [Albrecht et al., CRYPTO\u2722]

    On Provable White-Box Security in the Strong Incompressibility Model

    Get PDF
    Incompressibility is a popular security notion for white-box cryptography and captures that a large encryption program cannot be compressed without losing functionality. Fouque, Karpman, Kirchner and Minaud (FKKM) defined strong incompressibility, where a compressed program should not even help to distinguish encryptions of two messages of equal length. Equivalently, the notion can be phrased as indistinguishability under chosen-plaintext attacks and key-leakage (LK-IND-CPA), where the leakage rate is high. In this paper, we show that LK-IND-CPA security with superlogarithmic-length leakage, and thus strong incompressibility, cannot be proven under standard (i.e. single-stage) assumptions, if the encryption scheme is key-fixing, i.e. a polynomial number of message-ciphertext pairs uniquely determine the key with high probability. Our impossibility result refutes a claim by FKKM that their big-key generation mechanism achieves strong incompressibility when combined with any PRG or any conventional encryption scheme, since the claim is not true for encryption schemes which are key-fixing (or for PRGs which are injective). In particular, we prove that the cipher block chaining (CBC) block cipher mode is key-fixing when modelling the cipher as a truly random permutation for each key. Subsequent to and inspired by our work, FKKM prove that their original big-key generation mechanism can be combined with a random oracle into an LK-IND-CPA-secure encryption scheme, circumventing the impossibility result by the use of an idealised model. Along the way, our work also helps clarifying the relations between incompressible white-box cryptography, big-key symmetric encryption, and general leakage resilient cryptography, and their limitations

    Chainable Functional Commitments for Unbounded-Depth Circuits

    Get PDF
    A functional commitment (FC) scheme allows one to commit to a vector x⃗\vec{x} and later produce a short opening proof of (f,f(x⃗))(f, f(\vec{x})) for any admissible function ff. Since their inception, FC schemes supporting ever more expressive classes of functions have been proposed. In this work, we introduce a novel primitive that we call chainable functional commitment (CFC), which extends the functionality of FCs by allowing one to 1) open to functions of multiple inputs f(x⃗1,…,x⃗m)f(\vec x_1, \ldots, \vec x_m) that are committed independently, 2) while preserving the output also in committed form. We show that CFCs for quadratic polynomial maps generically imply FCs for circuits. Then, we efficiently realize CFCs for quadratic polynomials over pairing groups and lattices, resulting in the first FC schemes for circuits of unbounded depth based on either pairing-based or lattice-based falsifiable assumptions. Our FCs require fixing a-priori only the maximal width of the circuit to be evaluated, and have opening proofs whose size only depends on the depth of the circuit. Additionally, our FCs feature other nice properties such as being additively homomorphic and supporting sublinear-time verification after offline preprocessing. Using a recent transformation that constructs homomorphic signatures (HS) from FCs, we obtain the first pairing- and lattice-based realisations of HS for bounded-width, but unbounded-depth, circuits. Prior to this work, the only HS for general circuits is lattice-based and requires bounding the circuit depth at setup time

    Foundations of Ring Sampling

    Get PDF
    A ring signature scheme allows the signer to sign on behalf of an ad hoc set of users, called a ring. The verifier can be convinced that a ring member signs, but cannot point to the exact signer. Ring signatures have become increasingly important today with their deployment in anonymous cryptocurrencies. Conventionally, it is implicitly assumed that all ring members are equally likely to be the signer. This assumption is generally false in reality, leading to various practical and devastating deanonymizing attacks in Monero, one of the largest anonymous cryptocurrencies. These attacks highlight the unsatisfactory situation that how a ring should be chosen is poorly understood. We propose an analytical model of ring samplers towards a deeper understanding of them through systematic studies. Our model helps to describe how anonymous a ring sampler is with respect to a given signer distribution as an information-theoretic measure. We show that this measure is robust, in the sense that it only varies slightly when the signer distribution varies slightly. We then analyze three natural samplers -- uniform, mimicking, and partitioning -- under our model with respect to a family of signer distributions modeled after empirical Bitcoin data. We hope that our work paves the way towards researching ring samplers from a theoretical point of view

    Omniring: Scaling Up Private Payments Without Trusted Setup - Formal Foundations and Constructions of Ring Confidential Transactions with Log-size Proofs

    Get PDF
    Monero is the largest cryptocurrency with built-in cryptographic privacy features. The transactions are authenticated using spend proofs, which provide a certain level of anonymity by hiding the source accounts from which the funds are sent among a set (known as a ring) of other accounts. Due to its similarities to ring signatures, this core cryptographic component is called Ring Confidential Transactions (RingCT). Because of its practical relevance, several works attempt to analyze the security of RingCT. However, due to the complexity of RingCT they are either informal, miss fundamental functionalities, or introduce undesirable trusted setup assumptions. Regarding efficiency, Monero currently deploys a scheme in which the size of the spend proof is linear in the ring size. This limits the ring size to only a few accounts, which in turn limits the acquired anonymity significantly and facilitates de-anonymization attacks. As a solution to these problems, we present the first complete rigorous formalization of RingCT as a cryptographic primitive. We then propose a generic construction of RingCT and prove it secure in our formal security model. By instantiating our generic construction with new efficient zero-knowledge proofs we obtain Omniring, a fully-fledged RingCT scheme in the discrete logarithm setting that provides the highest concrete and asymptotic efficiency as of today. Omniring is the first RingCT scheme which 1) does not require a trusted setup or pairing-friendly elliptic curves, 2) has a proof size logarithmic in the size of the ring, and 3) allows to share the same ring between all source accounts in a transaction, thereby enabling significantly improved privacy level without sacrificing performance. Our zero-knowledge proofs rely on novel enhancements to the Bulletproofs framework (S&P 2018), which we believe are of independent interest

    On Sustainable Ring-based Anonymous Systems

    Get PDF
    Anonymous systems (e.g. anonymous cryptocurrencies and updatable anonymous credentials) often follow a construction template where an account can only perform a single anonymous action, which in turn potentially spawns new (and still single-use) accounts (e.g. UTXO with a balance to spend or session with a score to claim). Due to the anonymous nature of the action, no party can be sure which account has taken part in an action and, therefore, must maintain an ever-growing list of potentially unused accounts to ensure that the system keeps running correctly. Consequently, anonymous systems constructed based on this common template are seemingly not sustainable. In this work, we study the sustainability of ring-based anonymous systems, where a user performing an anonymous action is hidden within a set of decoy users, traditionally called a ``ring\u27\u27. On the positive side, we propose a general technique for ring-based anonymous systems to achieve sustainability. Along the way, we define a general model of decentralised anonymous systems (DAS) for arbitrary anonymous actions, and provide a generic construction which provably achieves sustainability. As a special case, we obtain the first construction of anonymous cryptocurrencies achieving sustainability without compromising availability. We also demonstrate the generality of our model by constructing sustainable decentralised anonymous social networks. On the negative side, we show empirically that Monero, one of the most popular anonymous cryptocurrencies, is unlikely to be sustainable without altering its current ring sampling strategy. The main subroutine is a sub-quadratic-time algorithm for detecting used accounts in a ring-based anonymous system

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al
    • …
    corecore