
Chainable Functional Commitments for Unbounded-Depth Circuits

David Balbás1,2, Dario Catalano3, Dario Fiore1, and Russell W. F. Lai4

1 IMDEA Software Institute, Madrid, Spain.
david.balbas@imdea.org
dario.fiore@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain.
3 University of Catania, Catania, Italy.

catalano@dmi.unict.it
4 Aalto University, Espoo, Finland.

russell.lai@aalto.fi

Abstract. A functional commitment (FC) scheme allows one to commit to a vector x and later
produce a short opening proof of (f, f(x)) for any admissible function f . Since their inception, FC
schemes supporting ever more expressive classes of functions have been proposed.
In this work, we introduce a novel primitive that we call chainable functional commitment (CFC),
which extends the functionality of FCs by allowing one to 1) open to functions of multiple inputs
f(x1, . . . ,xm) that are committed independently, 2) while preserving the output also in committed
form. We show that CFCs for quadratic polynomial maps generically imply FCs for circuits. Then, we
efficiently realize CFCs for quadratic polynomials over pairing groups and lattices, resulting in the first
FC schemes for circuits of unbounded depth based on either pairing-based or lattice-based falsifiable
assumptions. Our FCs require fixing a-priori only the maximal width of the circuit to be evaluated, and
have opening proofs whose size only depends on the depth of the circuit. Additionally, our FCs feature
other nice properties such as being additively homomorphic and supporting sublinear-time verification
after offline preprocessing.
Using a recent transformation that constructs homomorphic signatures (HS) from FCs, we obtain the
first pairing- and lattice-based realisations of HS for bounded-width, but unbounded-depth, circuits.
Prior to this work, the only HS for general circuits is lattice-based and requires bounding the circuit
depth at setup time.

1 Introduction

Commitment schemes allow a sender to commit to a message x in such a way that the message
remains secret until the moment she decides to open the commitment and reveal it (hiding), and
they allow the receiver to get convinced that the opened message is the same x originally used at
commitment time (binding).

Today, commitments are a ubiquitous building block in cryptographic protocols, including digital
signatures, zero-knowledge proofs and multiparty computation, to name a few. As applications
become more and more sophisticated, the basic commitment functionality may fall short. One
particular limitation is that the opening mechanism is all-or-nothing: either the sender opens in full
the commitment and the receiver learns the whole message, or the receiver gets nothing. A more
flexible and useful functionality would be to open the commitment to a function of the committed
message, that is to reveal f(x) for some function f .

This advanced commitment notion has been formalized by Libert, Ramanna and Yung who
called this primitive Functional Commitments (FC) [LRY16]. The property that makes functional
commitments unique (and nontrivial to realize) is succinctness: assuming that the message is a
large vector x, then both the commitment and the openings should be short, e.g., polylogarithmic

or constant in the size of x. The main security requirement of functional commitments is evaluation
binding: no polynomially bounded adversary should be able to, validly, open the commitment to
two different values y ̸= y′ for the same f . Additionally, FCs can also be hiding and zero-knowledge
(a commitment and possibly several openings should not reveal additional information about x).

Functional commitments are essentially a class of (commit-and-prove) succinct non-interactive
arguments (SNARGs) with a weaker security property, that is evaluation binding instead of sound-
ness. The notion of evaluation binding is not necessarily a weakness but can also be a feature: it is a
falsifiable security notion that makes FCs potentially realizable from falsifiable assumptions in the
standard model (i.e., without random oracles), without contradicting the celebrated result of Gentry
and Wichs about impossibility of SNARGs from falsifiable assumptions [GW11]. For this reason,
functional commitments can be an attractive alternative to SNARGs for implementing succinct ar-
guments in cryptographic protocols where evaluation binding is sufficient (notably, without carrying
the need of non-falsifiable assumptions). Examples of this case include homomorphic signatures and
verifiable databases as shown in [CFT22], as well as the numerous applications that employ vector
commitments [CFM08, LY10, CF13] or polynomial commitments [KZG10] (two primitives that are
a special case of the FC notion). An additional motivation for studying evaluation binding FCs is
that they can provide a different approach to construct SNARKs since any evaluation binding FC
can be compiled into a SNARK by adding a simpler SNARK proof of “I know x that opens the
commitment”.

The state-of-the-art on realizations of FCs encompasses a limited set of functionalities that
(besides the special cases of vector and polynomial commitments) include linear maps [LRY16,
LM19], semi-sparse polynomials [LP20] and constant-degree polynomials [ACL+22, CFT22] (see
Section 1.2 for a discussion on related and concurrent work).

1.1 Our Contribution

In this paper, we propose the first constructions of Functional Commitments that support the evalu-
ation of arbitrary arithmetic circuits of unbounded depth5 and are based on falsifiable assumptions.
Our FC schemes are also chainable, meaning that it is possible to open to functions of multiple com-
mitted inputs while preserving the output to be in committed form. To capture such functionality,
we introduce a novel primitive called Chainable Functional Commitment (CFC).

In our FC schemes only the maximal width of the circuits has to be fixed at setup time. The
size of the commitments is fully succinct in the input size; the size of opening proofs grows with
the multiplicative depth dC of the evaluated circuit C, but is otherwise independent of the circuit’s
size or the input length. Notably, our FC schemes provide an exponential improvement compared
to previous FCs that could only support polynomials of degree δ = O(1) with an efficiency (prover
time and parameter size) degrading exponentially in δ (as O(nδ))6 [ACL+22, CFT22].

We design our FCs for circuits in two steps: (1) a generic construction of an FC for unbounded-
depth circuits based on CFCs for quadratic functions, and (2) two realizations of CFCs, one based
on bilinear pairings and one based on lattices. The pairing-based CFC relies on a new falsifiable
assumption that we justify in the bilinear generic group model, while the lattice-based CFC relies
on a slight extension of the k-R-ISIS assumption recently introduced in [ACL+22]. Using either one
5 Looking ahead, our pairing-based instantiation supports arithmetic circuits over Zq, while our lattice-based in-

stantiation supports arithmetic circuits over cyclotomic rings Z[ζ] where wires carry values of bounded norm.
6 Note, when used for a circuit of depth d these solutions may have efficiency doubly exponential in d since in general
δ ≈ 2d.

2

FC scheme Functions |pp| |com| |π| AH

[LRY16] (pair.) linear maps λn λ λℓ ✓
[LM19] (pair.) linear maps λℓn λ λ ✓
[LP20] (pair.) semi-sparse poly λµ λℓ λ –
[ACL+22] (latt.) const. deg. poly p(λ)(n2δ+ℓ) p(λ) log n p(λ) log2 ℓn ✓
[CFT22] (pair.) const. deg. poly λℓn2δ λδf λδf ✓

This work:
Corol. 1.1 (pair.) AC of width ≤ w λw5 λ λd2C ✓
Corol. 1.3 (pair.) AC of size ≤ S λS5 λ λdC ✓
Corol. 2.2 (latt.) AC of width ≤ w p(λ)w5 p(λ) logw p(λ)dC log

2w ✓

Table 1: Comparison of FC schemes for functions with n inputs and ℓ outputs. Constants are omitted, e.g., λn means
O(λn) and p(·) represents some arbitrary polynomial function. For semi-sparse polynomials µ ≥ n is a sparsity-
dependent parameter (cf. [LP20]). For constant-degree polynomials δf is the degree of the polynomial f used in
opening while δ is the maximum degree fixed at setup. AC means arithmetic circuits, dC the depth of the circuit C
used in opening, and note that w ≥ n, ℓ. AH means ‘additively homomorphic’; schemes meeting this property can be
turned into homomorphic signatures.

of these two CFC constructions (and considering a few tradeoffs of our generic construction), we
obtain a variety of FC schemes; we summarize in Table 1 the most representative ones.

Our FC schemes enjoy useful additional properties.

1. They are additively homomorphic, which as shown in [CFT22] makes the FC updatable and
allows for building homomorphic signatures (HS). Notably, our new FC for circuits yields new HS
realizations that advance the state of the art (see slightly below for details).

2. They enjoy amortized efficient verification, which means that the verifier can precompute a ver-
ification key vkC associated to a circuit C and use this key (an unbounded number of times) to
verify openings for C in time (asymptotically) faster than evaluating C.

3. Our FC schemes can be trivially modified to have perfectly hiding commitments and efficiently
compiled into FCs with zero-knowledge openings.

Both efficient verification and zero-knowledge openings are relevant in the construction of HS
from FCs since, as showed in [CFT22], they imply the analogous properties of efficient verification
[CFW14, GVW15] and context hiding [BF11] in the resulting HS schemes.

Application to Homomorphic Signatures. Homomorphic signatures (HS) [JMSW02, BF11]
allow a signer to sign a large dataset x in such a way that anyone, holding a signature on x, can
perform a computation f on this data and derive a signature σf,y on the output y = f(x). This
signature vouches for the correctness of y as output of f on some legitimately signed data and is
publicly verifiable given a verification key, a description of f , and the result y. The most expressive
HS in the state of the art is the scheme of Gorbunov, Vaikuntanathan and Wichs [GVW15] that is
based on lattices and supports circuits with bounded number of inputs n and bounded (polynomial)
depth d. In their scheme, the signature size grows polynomially with the depth of the evaluated
circuit (precisely, as d3 · poly(λ)).

3

By applying a recently proposed transformation [CFT22], our new FCs for circuits yield new
HS that support the same class of functions and succinctness as supported by the FC, advancing
the state of the art. Notably, we obtain:

– The first HS for circuits based on pairings. Previously existing HS based on pairings can capture
at most circuits in NC1 [KNYY19, CFT22] and need a bound on the circuit size. In contrast, our
HS can evaluate circuits of any polynomial depth, achieving virtually the same capability of the
lattice-based HS of [GVW15] and with better succinctness. We believe this result is interesting
as it shows for the first time that we can build HS for circuits without the need of algebraic
structures, such as lattices, that are notoriously powerful.

– The first HS that do not require an a-priori bound on the depth. The work of Gorbunov, Vaikun-
tanathan and Wichs [GVW15] left open the problem of constructing fully-homomorphic signa-
tures, i.e., HS that can evaluate any computation in the class P without having to fix any bound
at key generation time. In our new HS we do not need to fix a bound on the depth but we
rather need a bound on the width of the circuits at key generation time. Although this result
does not fully solve the open problem of realizing fully-homomorphic signatures, we believe that
our schemes make one step ahead in this direction. Our observation is that dealing with a bound
on the circuit’s depth is more difficult than dealing with a bound on the width. As evidence for
this, we show a variant of our FC scheme (see Section 5.1) for which one can fix a bound n and
support circuits of larger width O(n) with an O(1) increase in proof size. Therefore, while our
solution needs a bound on the width, this is not strict, as opposed to the depth bound in the HS
of [GVW15].

Like the scheme of [GVW15], our HS constructions have efficient (offline/online) verification and
are context-hiding. As a drawback, our HS allow only a limited form of multi-hop evaluation, that is
the ability of computing on already evaluated signatures. In our case, we can compose computations
sequentially (i.e., given a signature σf,y for y = f(x) we can generate one for z = g(y) = g(f(x))),
while [GVW15] supports arbitrary compositions (e.g., given signatures for {yi = fi(x)}i, one can
generate one for z = g(f1(x), . . . , fn(x))). On the other hand, for circuits with multiple outputs,
the size of our signatures is independent of the output size, whereas in [GVW15] signatures grow
linearly with the number of outputs.

Our Novel Tool: Chainable Functional Commitments. The key novelty that allows us to
overcome the barrier in the state of the art and build the first FCs for circuits is the introduction and
realization of chainable functional commitments (CFC) – a new primitive of potentially independent
interest.

In brief, a CFC is a functional commitment where one can “open” to committed outputs. More
concretely, while a (basic) FC allows proving statements of the form “f(x) = y” for committed
x and publicly known y, a CFC allows generating a proof πf that comy is a commitment to
y = f(x1, . . .xm) for vectors x1, . . .xm, each independently committed in com1, . . . , comm. In
terms of security, CFCs must satisfy the analogue of evaluation binding, that is one cannot open
the same input commitments (com1, . . . , comm) to two distinct output commitments comy ̸= com′

y

for the same f .
Keeping outputs committed is what makes CFCs “chainable”, in the sense that committed out-

puts can serve as (committed) inputs for other openings. For instance, using the syntax above,
one can compute an opening πg proving that comz is a commitment to z = g(y). This way, the
concatenation of comy, πf , πg yields a proof that z = g(f(x1, . . .xm)).

4

The introduction and realization of CFCs are in our opinion the main conceptual and technical
contributions of this paper. From a conceptual point of view, the chaining functionality turns out
to be a fundamental feature to tackle the challenge of supporting a computation as expressive as an
arithmetic circuit. Indeed, we show that from a CFC for quadratic polynomial maps it is possible
to construct a (C)FC for arithmetic circuits. From the technical point of view, we propose new
techniques that depart from the ones of existing FCs for polynomials [ACL+22, CFT22] in that
the latter only work when the output vector is known to the verifier and there is a single input
commitment. We refer to Section 2 for an informal explanation of our techniques.

1.2 Related and Concurrent Work

As noticed in previous work, it is possible to construct an FC for arbitrary computations from a
universal SNARK and a succinct commitment scheme by generating a succinct commitment to the
input x and a SNARK proof for the statement “f(x) = y and x opens the commitment correctly”.
The drawback of this solution is that, by reducing to the knowledge-soundness of the SNARK, it
would require non-falsifiable assumptions [GW11]. Alternatively, one could also reduce the security
of this construction to the tautological (but falsifiable) assumption that the very same construction
is secure. While such an argument is logically correct, it yields a non-standard assumption against
the spirit of modern complexity-based cryptography. Hence, one of the goals in the FC literature is
to construct schemes based on simple assumptions, which is the direction taken in this work.

The idea of a commitment scheme where one can open to functions of the committed data was
implicitly suggested by Gorbunov, Vaikuntanathan and Wichs [GVW15], though their construction
is not succinct as the commitment size is linear in the length of the vector. Libert, Ramanna
and Yung [LRY16] were the first to formalize succinct functional commitments. They proposed a
succinct FC for linear forms and showed applications of this primitive to polynomial commitments
[KZG10] and accumulators. Recent works have extended FCs to support more expressive functions,
including linear maps [LM19], semi-sparse polynomials [LP20], and constant-degree polynomials
[ACL+22, CFT22]. Table 1 presents a comparison of these works with our results. Catalano, Fiore
and Tucker [CFT22] also proposed an FC for monotone span programs, which only achieves a weaker
notion of evaluation binding where the adversary must reveal the committed vector. A weaker
security model is also considered in [PPS21], who introduced a lattice-based FC scheme where a
trusted authority is assumed to generate, using a secret key, an opening key for each function for
which the prover wants to release an opening.

Compared to these prior works, ours addresses the main question left open in the state of the
art, which is to construct FCs for arbitrary computation from falsifiable assumptions.

Verifiable Computation. The functionality of functional commitments has similarities with
verifiable computation (VC) schemes (also known as SNARGs for P). The main difference between
VC and FC schemes is that in the latter, the input is committed as opposed to publicly known.
Looking ahead, our generic construction of FC from CFCs presents a similar high-level approach as
the SNARGs for P in [GR19] and [GZ21]. In particular, both constructions proceed level-by-level in
the circuit (an idea that dates back to the GKR protocol [GKR08]). Then, the prover 1) computes
a set of commitments to the wires at each level, and 2) proves that the committed vectors are
consistent with respect to the circuit evaluation.

Beyond this similarity, our construction and [GR19, GZ21] differ in techniques and the level of
security that we achieve. Notably, even though the verifier in [GR19, GZ21] may not need to see

5

the opening of the commitment at each level, soundness only holds with respect to adversaries that
reveal such opening. This translates into requiring the verifier to know the input (which is sufficient
for VC but not for FC). Besides, [GR19, GZ21] have a function-specific setup, as opposed to FCs
in which public parameters should be universal and functions are to be chosen at opening time.

Concurrent Work. Concurrently to our work, de Castro and Peikert [dCP23], and Wee and Wu
[WW23], also propose lattice-based constructions of functional commitments for circuits (as well as
polynomial and vector commitments). Their approaches differ significantly from ours, as they both
rely on homomorphic evaluation techniques [GSW13].

The work of [dCP23] constructs a “dual” FC (where one commits to the function f and proves
that f(x) = y for a given x)7 for bounded-depth boolean circuits. Their construction is selectively
secure under the standard SIS assumption and admits a transparent setup (i.e., the public param-
eters are a uniformly random string). Their FC does not have succinct openings though, as the
opening size is linear in either the input size or the size of f (in our setting where one commits to
f and opens to x).

The FC in [WW23] supports circuits of bounded depth, needs a structured setup, and is secure
under a new structured-BASIS assumption introduced in the same work. Their FC has succinct
openings that are polylogarithmic in the input size and polynomial in the circuit depth.

In comparison to [dCP23, WW23], our FC schemes support circuits of bounded width but
unbounded depth, with succinct openings that grow only with the depth of the circuit but are
independent of the input size. As [WW23], we require a trusted setup and achieve adaptive security
based on new falsifiable assumptions on either pairings or lattices. For the lattice-based FC we rely on
the Twin-k-R-ISIS assumption which is weaker than the BASIS assumption of [WW23] (see Section
7 for a comparison). Our FC schemes are the only ones that (i) have openings succinct also in the
output size,8 and (ii) achieve fast verification with pre-processing (i.e., after an input-independent
preprocessing verification time is sub-linear in the size of |f | and |x|).

2 A Technical Overview of Our Work

We construct our FCs for circuits in two main steps: (1) a generic construction of (C)FC for circuits
from CFCs for quadratic polynomial maps (Section 5), and (2) the realization of these CFCs based
on either pairings (Section 6) or lattices (Section 7). Below we give an informal overview of these
constructions.

2.1 (C)FC for Circuits from CFCs for Quadratic Functions

Our first result is a transformation from CFCs for quadratic polynomials to FCs for circuits that is
summarized in the following theorem.

Theorem 2 (informal) Let CFC be a chainable functional commitment for quadratic polynomial
maps f(x1, . . . ,xm) = y for any number of inputs m, such that each committed input vector xi and
the committed output y have length n. Then, there exist a functional commitment FC for arithmetic
circuits of bounded width n and unbounded depth d, such that:

- FC’s commitment size is the same as that of CFC;
7 One can recover the standard notion of committing to x and opening to f via universal evaluators.
8 This means that our FCs satisfy compactness as defined in [LM19] for subvector and linear map commitments.

6

- if CFC has opening proofs of size s(n,m), then FC has openings of size at most d · s(n, d).
Moreover, if CFC is additively homomorphic and/or efficiently verifiable, so is FC.

Our transform starts from the observation that the gates of an arithmetic circuit9 can be par-
titioned into “levels” according to their multiplicative depth, i.e., level h contains all the gates of
multiplicative depth h and level 0 contains the inputs. So, all the outputs of level h, denoted by
x(h), are computed by a quadratic polynomial map taking inputs from previous levels < h, and thus
the evaluation of a circuit C of width ≤ n and depth d can be described as the sequential evaluation
of quadratic polynomial maps f (h) : X nh → X n for h = 1 to d.

The basic idea of our generic FC is that, starting with a commitment com0 to the inputs x(0),
we can open it to y = C(x(0)) in two steps. First, we commit to the outputs of every level. Second,
we use the CFC opening functionality to prove that these values are computed correctly from values
committed in previous levels. Slightly more in detail, at level h we create a commitment comh to
the outputs x(h) = f (h)(x(0), . . . ,x(h−1)) and generate a CFC opening proof πh to show consistency
w.r.t. commitments com0, . . . , comh. Eventually, this strategy reaches the commitment comd of the
last level that includes the outputs, which can be opened to y (or kept committed if one wants to
build a CFC for circuits). The final proof π consists of all intermediate proofs and commitments,
π := (π1, . . . , πd, com1, . . . , comd−1).

Security reduces to the security of the CFC for quadratic functions. To see this, consider an
adversary that breaks FC evaluation binding by coming up with proofs π, π′ that verify for y ̸= y′

and for the same com0. Then, there must exist some level h such that the intermediate commitments
comh ̸= com′

h differ (where possibly h = d). If we take h∗ to be the smallest amongst such h, then
we can break evaluation binding of the quadratic CFC at level h∗.

As one can see, this construction makes our opening proofs grow with the depth of the circuit.
However, if the CFC commitments and opening proofs are short (e.g., s(n,m) is constant/logarithmic
in n, that is the circuit’s width), then the FC openings keep only such dependence on the depth.10 In
addition, we describe different strategies to (a) reduce the opening size for not-so-densely connected
circuits (for instance layered circuits), and (b) overcome the width bound without changing the
parameters at the expense of increased opening size.

2.2 A Framework for CFCs for Quadratic Functions

We next overview our general strategy of construction CFCs for quadratic functions, which admits
pairing- and lattice-based instantiations.

Theorems 4 and 5 (informal). Assuming the n-HiKer assumption (resp. the Twin-k-R-ISIS
assumption), our pairing-based (resp. lattice-based) CFC construction is a succinct CFC scheme for
quadratic functions over any m vectors of length ≤ n that admits efficient verification, is additively
homomorphic, and whose openings can be made zero-knowledge. For arbitrary quadratic functions,
the opening proofs have size s(n,m) = O

(
m2
)

(resp. s(n,m) = O(m · polylog(m · n)))11.

9 In our model we assume wlog arithmetic circuits where every gate is a quadratic polynomial of unbounded fan-in.
10 The CFC openings size s(n, d) may be linear in d for “dense” quadratic functions, but this would contribute at

most an additional factor of d to the succinctness of FC in the worst case.
11 Following Theorem 2, this gives a proof size of O

(
d3
)

for our pairing-based FC and O
(
d2 · polylog(d · w)

)
for our

lattice-based FC for circuits of depth d and width w. Nevertheless, the proof size can be reduced by a factor of d
in both cases, as we show in Table 1. We refer to Sections 6 and 7 for details.

7

To build our CFCs we devise new commitment and opening techniques that capture a quadratic
polynomial map y = f(x1, . . . ,xm) where each input is committed in comi, and the output is com-
mitted too in comy. Our two constructions (pairing-based and lattice-based) of CFCs for quadratic
functions have a similar high-level design that we introduce below.

For the pairing setting we adopt the implicit notation for bilinear groups G1,G2,GT of prime
order q by which [x]s denotes the vector of group elements (gx1

s , . . . , gxn
s) ∈ Gn

s for a fixed generator
gs. For the lattice setting, we let R be a cyclotomic ring and q be a large enough rational prime. In
this overview, we adopt the bracket notation [x] to express the representation of a given group or
ring element without further distinction.

Abstract functionality. To start, we define three (vectors of) commitment keys [α], [β], and [γ],
that live either in Gn

1 in the pairing setting, or in Rn
q in the lattice setting. A commitment of type

α to a vector x ∈ Zn
q is computed à la Pedersen, i.e., via an inner product, as X(α) = [⟨x,α⟩].

Commitments of type β and γ are defined analogously.
In our CFCs the commitments generated by the commit algorithm Com and used by the opening

algorithm Open are only those of type α, whereas commitments of type β and γ are used as auxiliary
values in the opening proofs. In order to create a CFC opening to a quadratic polynomial, our main
tool is a technique realizing the following functionality:

– [(α, β)→ γ]-Quadratic opening: given m commitments for each of the keys {X(α)
i = [⟨xi,α⟩], X(β)

i =

[⟨xi,β⟩]}i=1...m and a commitment Y (γ) = [⟨y,γ⟩] generate a succinct opening proof π
(γ)
f that

y = f(x1, . . . ,xm).

Before seeing how we generate this opening, we observe that π(γ)
f does not yet achieve our goal since

it assumes the availability of both type-α and type-β commitments on the inputs, and it only allows
us to “move” to a type-γ commitment of the output, preventing us from achieving chainability.

We solve both issues by designing two special cases of the functionality above:

– [α→ β]-Identity opening: given a type-α commitment X(α) = [⟨x,α⟩] show that a type-β com-
mitment X(β) commits to the same x, i.e., X(β) = [⟨x,β⟩];

– [γ → α]-Identity opening: given a type-γ commitment Y (γ) = [⟨y,γ⟩] show that a type-α com-
mitment Y (α) commits to the same y, i.e., Y (α) = [⟨y,α⟩].

We use the identity opening mechanisms to “close the circle” in such a way to obtain a quadratic
opening mechanism where all inputs and outputs are only type-α commitments. To summarize, our
CFC Open algorithm consists of the following steps:

(i) compute a type-β commitment X
(β)
i to each input along with an [α→ β]-Identity opening proof

that X
(β)
i commits to the same xi in X

(α)
i ;

(ii) compute a type-γ commitment Y (γ) to the result y = f(x1, . . . ,xm) and a [(α, β)→ γ]-Quadratic
opening proof attesting the validity of y w.r.t. the input commitment pairs (X

(α)
i , X

(β)
i);

(iii) finally, use the [γ → α]-identity opening to ensure that Y (α) is a commitment to the same y in
the Y (γ) computed in (ii).

Our [(α, β) → γ]-quadratic opening method. We use the fact that a quadratic polynomial
map f : X nm → X n can be linearized via appropriately defined vector e and matrices Fi and Gi,j

such that
y = f(x1, . . . ,xm) = e+

∑
i

Fi · xi +
∑
i,j≥i

Gi,j · (xi ⊗ xj)

8

where ⊗ denotes the tensor product.
In this overview, we only show how to produce an opening proof for a single quadratic term,

i.e., to show that yi,j = Gi,j · (xi⊗xj) given input commitments X(α)
i , X

(β)
i , X

(α)
j , X

(β)
j and output

Y
(γ)
i,j . This is the core of our technique since the full opening for f is obtained by doing an additive

aggregation of openings for all the terms in the sum.
To open to Gi,j , we first ensure that the verifier knows a commitment Zi,j to the tensor product

xi ⊗ xj , calculated as
Zi,j := [⟨xi ⊗ xj ,α⊗ β⟩].

The way in which the verifier obtains Zi,j varies in the pairing and lattice constructions. Then, the
prover generates a linear map opening that the vector yi,j in the type-γ commitment Y

(γ)
i,j is the

result of applying Gi,j to the vector committed in Zi,j . We compute this proof as follows. Denote
with Gi,j,k the k-th row of Gi,j and with 1

α⊗β the component-wise inverse of α⊗ β. Let

Γi,j =

n∑
k=1

Gi,j,k ·
[

γk
α⊗ β

]
be an encoding of the matrix Gi,j that should be computable by the verifier (who can also pre-
compute Γi,j). Then we rely on the fact that

Zi,j · Γi,j = [⟨Gi,j · xi ⊗ xj︸ ︷︷ ︸
yi,j

,γ⟩] +
∑

(h,l) ̸=(h′,l′),k

ch,l,h′,l′,k ·
[
αh′βl′

αhβl
γk

]
. (1)

Namely, Zi,j · Γi,j can be split into the sum between a non-rational term that actually encodes the
(commitment to the) result [⟨yi,j ,γ⟩], and a linear combination of rational monomials, which is
eventually encoded as part of the opening proof, and whose coefficients can be efficiently computed
given Gi,j ,xi and xj .

For the prover to prove such splitting, and for the verifier to compute the encoding, we need to
include additional elements in the public parameters. In particular, we add: [α⊗ β] for computing
Zi,j ,

[
γk

α⊗β

]
for computing Γi,j , and

[
αh′βl′
αhβl

γk

]
for computing the sum in (1). To obtain security, we

instantiate the different commitments and verification checks over pairing groups and lattice rings,
whose particularities we describe next.

2.3 Pairing-Based CFC

In our pairing-based CFC in Section 6, the elements in the public parameters belong to the groups G1

and G2, and the input commitment is computed in G1 as X(α) = [⟨x,α⟩]1. For the verifier to obtain
the commitment to the tensor product Zi,j , the prover calculates and sends Zi,j := [⟨xi⊗xj ,α⊗β⟩]1
and X

(2)
i := [⟨xi,α⟩]2, and the verifier checks

e(X
(α)
i , [1]2)

?
= e([1]1, X

(2)
i)

to test that X
(2)
i ∈ G2 encodes the same vector of X(α)

i ∈ G1, and

e(Zi,j , [1]2)
?
= e(X

(β)
j , X

(2)
i)

9

to test the well-formedness of Zi,j . To let the prover compute this, we add elements [α]2 in G2 to
the public parameters.

Finally, the prover computes and sends π
(γ)
i,j =

∑
(h,l)̸=(h′,l′),k ch,l,h′,l′,k · [

αh′βl′
αhβl

γkηγ]1. This way,
the verifier can test equation (1) using pairings as

e (Zi,j , [Γi,j]2)
?
= e

(
Y

(γ)
i,j , [ηγ]2

)
e
(
π
(γ)
i,j , [1]2

)
. (2)

Note that we are introducing an additional variable ηγ in the verification, which is central to the
security of the scheme. More precisely, in our pairing-based CFC we provide in the public parameters
the elements: [ηγ]2 (to be used in the verification above), {[γkηγα⊗β]2}k (used to compute [Γi,j]2), and

{[αh′βl′
αhβl

γkηγ]1}(h,l)̸=(h′,l′),k (to compute the proof π(γ)
i,j). The security of the scheme relies precisely

on the fact that the public parameters do not include any term of the form [γkηγ]1 in the group G1.
To see how this relates to the scheme, suppose that one breaks evaluation binding by finding two

proofs π, π̃ that open to different commitments Y
(γ)
i,j and Ỹ

(γ)
i,j for the same function Gi,j . Then, by

(2), we can compute U = Ỹ
(γ)
i,j /Y

(γ)
i,j and V = π/π̃ such that (U, V) is in the linear span of ([1]1, [ηγ]1).

However, elements of this form cannot be derived from linear combinations of group elements in the
public parameters. This is captured formally by our HintedKernel (HiKer) assumption, which we
justify in the generic (bilinear) group model (Appendix B). Our HiKer assumption can be seen as
a “hinted” version of the KerMDH assumptions of [MRV16].12

In terms of succinctness, the opening proof size of our pairing-based CFC is linear in the density
of the quadratic polynomial, that is the number of nonzero quadratic terms xixj , which is in the
worst case quadratic on the number m of input commitments. This is due to the fact that, even if
we can compress all proofs π(γ)

i,j in one, the prover still needs to provide every Zi,j for 1 ≤ i ≤ j ≤ m.
Fortunately, in our construction of FC for circuits, we can reduce the opening size of the CFC at
each layer from quadratic to linear. We refer to Corollary 1 for further details.

2.4 Lattice-Based CFC

In our lattice-based CFC in Section 7, we sample commitment keys α,β,γ uniformly from Rn
q . The

public parameters also contain two trapdoored matrices A,B ∈ Rη×ℓ
q and a vector t ∈ Rη

q , where
R is the ring of integers of a cyclotomic field, and η, ℓ are determined by the trapdoor sampling
algorithm. Instead of providing the ring elements α⊗β (and all elements that result from evaluating
diverse monomials g on α,β,γ) as in the pairing-based construction, we include a short preimage
ug of each ring element such that A · ug ≡ t · g(α,β,γ) mod q, obtained with the help of the
trapdoors13.

Given commitments X
(α)
i = ⟨α,xi⟩, the verifier can easily compute the commitment to the

tensor product Zi,j = X
(α)
i ·X(β)

j = ⟨α ⊗ β,xi ⊗ xj⟩ thanks to the ring structure of Rq. We note
that in the scheme, we need to make an additional restriction that both the vectors x1, . . . ,xm and
the coefficients of the polynomial map f are short. This implies that the coefficients ch,l,h′,l′,k in
equation (1) are also short.
12 For matrices [A]2 from certain (random) distributions, KerMDH asks the adversary to find a nonzero vector [z]1

such that Az = 0. In HiKer, the adversary is challenged to find a nonzero [z]1 = [u, v]1 such that uη+v = 0, when
given [A]2 = [1, η]2, but also other group elements, the “hints”, that depend on η and other random variables.

13 Preimages of some monomials with respect to B are also included in the public parameters, but we omit them in
this overview.

10

With this restriction, we enable the proof of the split using the short preimages of each ring
element αh′βl′

αhβl
γk available in the public parameters. This allows the prover to compute a short

preimage u
(γ)
i,j for the element Zi,j ·Γi,j − Y

(γ)
i,j , which the verifier can efficiently check by A ·u(γ)

i,j ≡
t · (Zi,j ·Γi,j−Y

(γ)
i,j) mod q (note again that Γi,j depends on the function and can be pre-computed),

in addition to a norm check on u
(γ)
i,j .

In comparison to our pairing-based CFC, here the prover no longer needs to provide the Zi,j

elements, but only the X
(β)
i for every 1 ≤ i ≤ m such that xixj is non-zero for some j. Thus, the

opening proof size of our lattice-based CFC is (at most) linear in the number m of committed vectors.
Naively, this results in opening proofs for our lattice-based FC for circuits that grow quadratically on
the circuit depth. However, in Corollary 2 we show how to reduce this dependency from quadratic to
linear for any circuit (even non-layered ones). We also note that the lattice parameters need to be set
as a function of the size n of the committed vectors, therefore the proof also grows (logarithmically)
in the circuit width.

The security of the scheme essentially relies on the fact that no short preimage for ring elements
γk is available to the prover. We capture this fact via the Twin-k-R-ISIS assumption (Section 7),
which extends the k-R-ISIS assumption from [ACL+22]. Essentially, k-R-ISIS states that even when
given short preimages ug satisfying A · ug ≡ t · g(v) mod q for all g in a given set of monomials,
it is hard to find a SIS solution (i.e. a short non-zero preimage u∗) such that A · u∗ ≡ 0 mod q.
Our Twin-k-R-ISIS states that finding a solution (u∗,v∗) for A ·u∗ +B · v∗ ≡ 0 mod q is still hard
even if we also provide preimages of a strictly different set of monomials with respect to a second
(independent) matrix B.

In Section 7.1, we analyse Twin-k-R-ISIS and compare it to k-R-ISIS and the BASIS assumption
from [WW23]. Although both our Twin-k-R-ISIS and HiKer assumptions are new and non-standard,
we remark that they are well-parametrized assumptions with a simple winning condition, which
differs from that of the FC scheme. As typical in the lifetime of new cryptographic primitives, we
expect that future work can fill this gap.

3 Preliminaries

Notation. We denote by N the set of natural numbers > 0. We denote the security parameter by
λ ∈ N. We call a function ϵ negligible, denoted ϵ(λ) = negl(λ), if ϵ(λ) = O(λ−c) for every constant
c > 0, and call a function p(λ) polynomial, denoted p(λ) = poly, if p(λ) = O(λc) for some constant
c > 0. We say that an algorithm is probabilistic polynomial time (PPT) if it consumes randomness
and its running time is bounded by some p(λ) = poly(λ). For a finite set S, x←$ S denotes sampling
x uniformly at random in S. For an algorithm A, we write y ← A(x) for the output of A on input
x. For a positive n ∈ N, [n] is the set {1, . . . , n}. We denote vectors x and matrices M using bold
fonts. For a ring R, given two vectors x,y ∈ Rn, z := (x ⊗ y) ∈ Rn2 denotes their Kronecker
product (that is a vectorization of the outer product), i.e., ∀i, j ∈ [n] : zi+(j−1)n = xiyj .

3.1 Functional Commitments

In this section we give the definition of functional commitments (FC) for generic classes of functions,
by generalizing the one given in [LRY16] for linear functions. For notational simplicity and without
loss of generality, we give our definitions for functions that have n inputs and n outputs.

11

Definition 1 (Functional Commitments). Let X be some domain and let F ⊆ {f : X n → X n}
be a family of functions over X , with n inputs and n outputs. A functional commitment scheme
for F is a tuple of algorithms FC = (Setup,Com,Open,Ver) that work as follows and that satisfy
correctness and succinctness defined below.

Setup(1λ, 1n)→ ck on input the security parameter λ and the functions parameters n, outputs a
commitment key ck.

Com(ck,x; r)→ (com, aux) on input a vector x ∈ X n and (possibly) randomness r, outputs a com-
mitment com and related auxiliary information aux.14

Open(ck, aux, f)→ π on input an auxiliary information aux and a function f ∈ F , outputs an
opening proof π.

Ver(ck, com, f,y, π)→ b ∈ {0, 1} on input a commitment com, an opening proof π, a function f ∈ F
and a value y ∈ X n, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n ∈ N, all ck ←$ Setup(1λ, 1n), any f : X n → X n in the
class F , and any x ∈ X n, if (com, aux)← Com(ck,x), then

Pr[Ver(ck, com, f, f(x),Open(ck, aux, f)) = 1] = 1.

Succinctness. Let us assume that the admissible functions can be partitioned as F = {Fκ}κ∈K
for some set K, and let s : N × K → N be a function. A functional commitment FC for F is said
to be s(n, κ)-succinct if there exists a polynomial p(λ) = poly(λ) such that for any κ ∈ K, function
f : X n → X n s.t. f ∈ Fκ, honestly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n,
commitment (com, aux)← Com(ck,x) and opening π ← Open(ck, aux, f), it holds that |com| ≤ p(λ)
and |π| ≤ p(λ) · s(n, κ).

In order to model and compare different constructions, the notion of succinctness that we in-
troduce is parametric with respect to a function s(n, κ) that depends on the input-output length n
and some parameter κ of the evaluated function. In some cases we will express the function s using
asymptotic notation. To give some examples, κ could be an integer expressing the depth/size of a
circuit (and thus Fκ are all circuits of depth/size κ), the degree of a polynomial, or the running
time of a Turing machine. Accordingly, K is a set that partitions the class of admissible functions,
e.g., K = [D] if the admissible functions are all circuits of depth ≤ D, or K = N if one wants to
capture circuits of any depth.

The security definition of FCs proposed in [LRY16] is called evaluation binding and says that a
PPT adversary cannot open a commitment to two distinct outputs for the same function.

Definition 2 (Evaluation Binding). For any PPT adversary A, the following probability is
negl(λ):

AdvEvBind
A,FC (λ) = Pr

Ver(ck, com, f,y, π) = 1

∧ y ̸= y′ ∧
Ver(ck, com, f,y′, π′) = 1

:
ck← Setup(1λ, 1n)

(com, f,y, π,y′, π′)← A(ck)


14 In our constructions, we often omit r from the inputs; in such a case we assume either that r is randomly sampled

or that the commitment algorithm is deterministic.

12

For simplicity of presentation, in all our security definitions, we omit checking the domains of the
elements returned by the adversary, e.g., that f ∈ F and y ∈ X n etc.

We show that evaluation binding implies the classical binding notion.

Proposition 1. Let FC be an FC scheme satisfying evaluation binding. Then FC.Com is a compu-
tationally binding commitment scheme, namely any PPT adversary has probability negl(λ) of finding
a tuple (x, r,x′, r′) such that x ̸= x′ and Com(ck,x; r) = Com(ck,x′; r′).

Proof. The proof is rather simple and works as follows. Consider an adversary A that returns
(x, r,x′, r′) such that x ̸= x′ and Com(ck,x; r) = Com(ck,x′; r′) with non-negligible probability.
Then we can use it to build an adversary B that returns (com, f,y, π,y′, π′) such that Ver(ck, com, f,y, π) =
Ver(ck, com, f,y′, π′) = 1 and y ̸= y′. To do so, B runs A and then looks for a function f such that
y = f(x) ̸= f(x′) = y′, and computes (com, aux) ← Com(ck,x; r), (com′, aux′) ← Com(ck,x′; r′),
π ← Open(ck, aux, f), π′ ← Open(ck, aux′, f). By the correctness of FC, π and π′ must verify for y
and y′ respectively, and for the same commitment com = com′ (due to the break of binding by A).
Therefore, B’s output is a valid attack against evaluation binding.

In Appendix A, we also recall two security notions that are strictly stronger than evaluation
binding. The first is strong evaluation binding, introduced in [LM19]. In this notion, the adversary
outputs a commitment com and a collection of openings to one or several function-output pairs
{fi,yi}, and we say that it wins if these define an inconsistent system of equations (i.e., there is no
valid x such that fi(x) = yi for all i). Then, we introduce the notion of knowledge extractability
and prove that if an FC is knowledge extractable, then it also satisfies strong evaluation binding.

3.2 Additional Properties of FCs

Here we define three extra properties of functional commitments that can be useful in applications.

Additive-homomorphic FCs. These are functional commitments where, given two commitments
com1 and com2 to vectors x1 and x2 respectively, one can compute a commitment to x1 + x2.

Definition 3 (Additive-homomorphic FCs [CFT22]). Let FC be a functional commitment
scheme where X is a ring. Then FC is additive homomorphic if there exist deterministic algorithms
FC.Add(ck, com1, . . . , comn)→ com, FC.Addaux(ck, aux1, . . . , auxn)→ aux and FC.Addr(ck, r1, . . . , rn)→
r such that for any xi ∈ X and (comi, auxi) ← Com(ck,xi; ri), if com ← FC.Add(ck, com1, . . . ,
comn), aux ← FC.Addaux(ck, aux1, . . . , auxn), and r ← FC.Addr(ck, r1, . . . , rn), then (com, aux) =
Com(ck,

∑n
i=1 xi; r).

As shown in [CFT22], an additive-homomorphic FC can be used to construct multi-input ho-
momorphic signatures, and it is also updatable.

Efficient Amortized Verification. An FC with this property enables the verifier to precompute
a verification key vkf associated to the function f , with which they can check any opening for f in
time asymptotically faster than running f .

Definition 4 (Amortized efficient verification). A functional commitment scheme FC for F
has amortized efficient verification if there exist two additional algorithms vkf ← VerPrep(ck, f) and
b ← EffVer(vkf , com,y, π) such that for any n = poly(λ), function f : X n → X n s.t. f ∈ F , any
honestly generated commitment key ck ← Setup(1λ, 1n), vector x ∈ X n, commitment (com, aux) ←

13

Com(ck,x) and opening π ← Open(ck, aux, f), it holds: (a) EffVer(VerPrep(ck, f), com,y, π) =
Ver(ck, com, f,y, π), and (b) the running time of EffVer is o(T) where T = T (λ) is the running
time of Ver(ck, com, f,y, π).

Hiding and Zero Knowledge. Intuitively, an FC is hiding if the commitments produced through
Com are hiding, in the classical sense. For zero-knowledge, the goal is that the openings produced by
Open should not reveal more information about the committed vector beyond what can be deduced
from the output, i.e., that x is such that y = f(x).

We use the formal definitions introduced in [CFT22].

Definition 5 (Com-Hiding [CFT22]). A FC has perfectly (resp. statistically, computationally)
hiding commitments if there are simulator algorithms Sim = (SimSetup,SimCom, SimEquiv) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck← Setup(1λ, 1n)} and {ck : (ck, td)← SimSetup(1

λ, n)} are identical (resp. statistically, compu-
tationally indistinguishable).

– (ii) for any vector x ∈ X n, keys (ck, td)← SimSetup(1
λ, n), the following distributions are identical

(resp. statistically, computationally indistinguishable):

{Com(ck,x)} ≈ {(com, aux) : (com, ãux)← SimCom(td), aux← SimEquiv(td, com, ãux,x)}

Definition 6 (Zero-knowledge openings). An FC has perfect (resp. statistical, computational)
zero-knowledge openings if there is a simulator Sim = (SimSetup, SimCom, SimEquiv,SimOpen) such that

– (i) SimSetup generates indistinguishable keys, along with a trapdoor, i.e., the distributions {ck :
ck← Setup(1λ, 1n)} and {ck : (ck, td)← SimSetup(1

λ, n)} are identical (resp. statistically, compu-
tationally indistinguishable).

– (ii) for any vector x ∈ X n, keys (ck, td) ← SimSetup(1
λ, n), functions f1, . . . , fQ ∈ F , and com-

mitments (com, aux)← Com(ck,x) and (c̃om, ãux)← SimCom(ck), the following two distributions
are identical (resp. statistically, computationally indistinguishable):

(c̃om, {SimOpen(td, ãux, c̃om, fj , fj(x))}Qj=1) ≈ (com, {Open(ck, aux, fj)}Qj=1)

We state a simple result showing that an FC with hiding commitments (but not necessarily zero-
knowledge openings) can be converted, via the use of a NIZK scheme, into one that also achieves
zero-knowledge openings. The proof is straightforward and we show it in Appendix A.1.

Theorem 1. Let FC be an FC scheme that satisfies com-hiding (Definition 5), and let Π be a
knowledge-sound NIZK for the NP relation RFC = {((ck, com, f,y);π) : Ver(ck, com, f,y, π) = 1}.
Then there exists an FC scheme FC∗ for the same class of functions supported by FC that has com-
hiding and zero-knowledge openings. Furthermore, if FC is additive-homomorphic, so is FC∗; if FC
has efficient verification and Π supports R′

FC = {(vkf , com,y;π) : EffVer(vkf , com,y, π) = 1}, then
FC∗ has also efficient verification.

4 Chainable Functional Commitments

As described in the introduction, we introduce the notion of Chainable Functional Commitments
(CFC), which is an extension of the FC primitive that allows one to “chain” multiple openings to
different functions.

14

Definition 7 (Chainable Functional Commitments). Let X be some domain, n = poly(λ) and
let F ⊆ {f : X nm → X n} be a family of functions over X for any integer m = poly(λ). A chainable
functional commitment scheme for F is a tuple of algorithms CFC = (Setup,Com,Open,Ver) that
works as follows and that satisfies correctness and succinctness.

Setup(1λ, 1n)→ ck on input the security parameter λ and the vector length n, outputs a commitment
key ck.

Com(ck,x; r)→ (com, aux) on input a vector x ∈ X n and (possibly) randomness r, outputs a com-
mitment com and related auxiliary information aux.

Open(ck, (auxi)i∈[m], f)→ π given auxiliary informations (auxi)i∈[m], one for every committed input,
and a function f ∈ F , returns an opening proof π.

Ver(ck, (comi)i∈[m], comy, f, π)→ b ∈ {0, 1} on input commitments (comi)i∈[m] to the m inputs and
comy to the output, an opening proof π, and a function f ∈ F , accepts (b = 1) or rejects (b = 0).

Correctness. CFC is correct if for any n,m ∈ N, all ck ←$ Setup(1λ, 1n), any f : X nm → X n in
the class F , and any set of vectors {xi}i∈[m] such that xi ∈ X n, if (comi, auxi) ← Com(ck,xi) for
every i ∈ [m] and (comy, auxy)← Com(ck, f(x1, . . . ,xm)),

Pr
[
Ver(ck, (comi)i∈[m], comy, f,Open(ck, (auxi)i∈[m], f)) = 1

]
= 1.

Succinctness. Let F = {Fκ}κ∈K for some set K and let s : N×N×K be a function. A chainable
functional commitment CFC is s(n,m, κ)-succinct if there exists a polynomial p(λ) = poly(λ) such
that for any n,m and κ ∈ K, function f : Xmn → X n, f ∈ Fκ, honestly generated commitment
key ck← Setup(1λ, 1n), vectors xi ∈ X n and commitments (comi, auxi)← Com(ck,xi) for i ∈ [m],
(comy, auxy) ← Com(ck, f(x1, . . . ,xm)), and opening π ← Open(ck, (auxi)i∈[m], f), it holds that
|comi|, |comy| ≤ p(λ) for every i ∈ [m] and |π| ≤ p(λ) · s(n,m, κ).

As in the case of FCs (Definition 1) we define succinctness in a parametric way, and we are
interested in CFC constructions supporting non-trivial functions s(n,m, κ) that are sublinear or
constant in n,m.

Additive homomorphism and efficient verification. As for functional commitments, a CFC
can also be additively homomorphic and have amortized efficient verification. We omit the formal
definitions of these properties as they are analogous to Definition 3 and Definition 4 respectively.

Definition 8 (Evaluation Binding). For any PPT adversary A, the following probability is
negl(λ):

Pr

Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ comy ̸= com′
y ∧

Ver(ck, (comi)i∈[m], com
′
y, f, π

′) = 1

:

ck← Setup(1λ, 1n)(
(comi)i∈[m], f,

comy, π,
com′

y, π
′

)
← A(ck)


As one can notice, the above notion of evaluation binding can only hold in the case when the

output commitments comy are generated deterministically. This is still enough for using CFCs to
construct FCs with hiding commitments to inputs and zero-knowledge openings (thanks to Theorem
1). We leave the definition of CFCs with hiding output commitments for future work.

We introduce the definition of a knowledge extractable CFC in Appendix A.

15

5 FC for Circuits from CFC for Quadratic Polynomials

In this section we introduce a generic construction of a Functional Commitment scheme for arith-
metic circuits of bounded width n, from any Chainable Functional Commitment for quadratic
functions over inputs of length n.

Circuit model and notation. Let R be a commutative ring. We consider arithmetic circuits
C : Rn → Rn where every gate is a quadratic polynomial with bounded coefficients. It is not hard
to see that such a model captures the more common model of arithmetic circuits consisting of
fan-in-2 gates that compute either addition or multiplication.

More in detail, we model C as a directed acyclic graph (DAG) where every node is either an
input, an output or a gate, and input (resp. output) nodes have in-degree (resp. out-degree) 0. We
partition the nodes in the DAG defined by C in levels as follows. Level 0 contains all the input
nodes. Let the depth of a gate g be the length of the longest path from any input to g, in the DAG
defined by the circuit. Then, for h ≥ 1, we define level h as the subset of gates of depth h. Note
that any gate in level h has at least one input coming from a gate at level h− 1 (while other inputs
may come from gates at any other previous level 0, . . . , h− 2). The depth of the circuit C, denoted
dC (or simply d when clear from the context), is the number of levels of C. Finally, we assume that
the last level dC also contains output nodes.15

In this model, we define the width of C, denoted by n, as the maximum number of nodes in any
level h = 0 to dC . Note that the width upper bounds the input length. For simplicity, we assume
without loss of generality circuits with maximal n inputs and n gates in every level.

When we evaluate C on an input x, we denote the input values by x(0), and the outputs of
the gates in level h by the vector x(h). We note that, for every k ∈ [n], the output of the k-th
gate in level h can be defined as x

(h)
k = f

(h)
k (x(0), . . . ,x(h−1)) where f

(h)
k : Rnh → R is a quadratic

polynomial. We group all these n polynomials f
(h)
1 , . . . , f

(h)
n into the quadratic polynomial map

f (h) : Rnh → Rn such that x(h) = f (h)(x(0), . . . ,x(h−1)). We denote the operation that extracts
these functions {f (h)} from C by (f (1), . . . , f (d))← Parse(C).

Quadratic functions. As we mentioned above, a gate in our circuit model computes a quadratic
polynomial. Thus all the gates at a given level form a vector of n quadratic polynomials that take
up to m = poly(λ) vectors and output a single vector. We define this class of functions as

Fquad = {f : Rnm → Rn : f = (fk)k∈[n] ∧ ∀k ∈ [n] fk ∈ R[X
(1)
1 , . . . , X(m)

n]≤2}.

A quadratic polynomial map f ∈ Fquad, f : Rmn → Rn, such as those representing the computation
done at a given level of a circuit, can be expressed in a compact form. For f(x(1), . . . ,x(m)) = y,
we can define d matrices F(h) ∈ Rn×n, d(d + 1)/2 matrices G(h,h′) ∈ Rn×n2 , and a vector e ∈ Fn

such that

f(x(1), . . . ,x(m)) = e+
∑

h∈S1(f)

F(h) · x(h) +
∑

(h,h′)∈S⊗
2 (f)

G(h,h′) · (x(h) ⊗ x(h′)). (3)

15 This can be assumed without loss of generality. If we have an output x
(h)
i at level h < d, we can introduce a linear

gate at level d that takes x
(h)
i and some arbitrary x

(d−1)
j as input, and outputs x

(d)
k = x

(h)
i + 0 · x(d−1)

j .

16

The sets S1(f) and S⊗2 (f) are the linear support and the quadratic support of f that we define
below; for now S1 = [m], S⊗2 = {(h, h′) ∈ [m]× [m] : h ≤ h′}.16

We note that, in an arbitrary circuit, the function f (h) at each level may depend on values from
any previous level, but not necessarily from all of them. To capture such connectivity precisely, we
define the linear support of f ∈ Fquad, denoted S1(f) ⊆ [m], as the set of indices h where the linear
part of f is nonzero with respect to any term X

(h)
i . Formally,

S1(f) := {h ∈ [m] : F(h) ̸= 0}.

Analogously, we define the quadratic support of f , denoted S2(f) ⊆ [m], as the indices h where f is
nonzero with respect to any term X

(h)
i ·X(h′)

j for one or more h′ ∈ [m]. Formally,

S2(f) := {h ∈ [m] : ∃h′ G(h,h′) ̸= 0}.

We will also express the quadratic support using pairs of indices,

S⊗2 (f) := {(h, h′) ∈ [m]× [m] : h ≤ h′ ∧G(h,h) ̸= 0}.

We also say h ∈ S2(f) whenever (t, h) ∈ S⊗2 (f) or (h, t) ∈ S⊗2 (f) for some t ∈ [m]. Finally, we define
the support of f as the union of its linear and quadratic supports, namely S(f) = S1(f)∪S2(f). By
using the linear and quadratic supports, we can express polynomial functions in Fquad as follows:

f(x(1), . . . ,x(m)) = e+
∑

h∈S1(f)

F(h) · x(h) +
∑

(h,h′)∈S⊗
2 (f)

G(h,h′) · (x(h) ⊗ x(h′)). (4)

Consider a circuit C and let (f (1), . . . , f (d)) ← Parse(C). Then every function f (h) can be ex-
pressed and computed using only the inputs in S(f (h)), namely f (h)((x(h′))h′∈S(f (h))) = f (h)(x(0), . . . ,x(h−1)).

We call the number of inputs in the support of f (h), namely |S(f (h))|, the in-degree of level h. We
say that a circuit C has in-degree tC if tC = maxh∈[dC] |S(f

(h))|. We call C a layered circuit if it has
in-degree 1. Notice that for a layered circuit it holds that x(d) = C(x(0)) where x(h) = f (h)(x(h−1))
for all h = 1 to d.

Classes of circuits. To properly define the succinctness and the functions supported by our FC
construction, we parametrize the circuits according to three parameters, the depth, the in-degree,
and the width. Let F(d,t,w) = {C : Rn → Rn : dC = d, tC = t, wC = w}, where dC ∈ N, tC ≤ d,
wC ≤ w are the depth, in-degree, and width of C, respectively. Then our FC scheme supports
any arithmetic circuit of width at most n, in the model described above. We denote this class by
Fn := {F(d,t,w)}d∈N,t≤d,w≤n.

Construction. In Figure 1 we present our FC construction for Fn. We assume, without loss of
generality, that the auxiliary input aux generated by CFC.Com contains the committed input x. In
the protocol, we retrieve x from aux via a Parse function. Note that the same construction becomes
a CFC for Fn if the verifier takes comd as input and skips line 4 of Figure 1.

Our goal in this section is to prove the following theorem.

16 This representation is not unique as x(h) ⊗ x(h′) contains repeated entries, but this can be solved by agreeing on
appropriately placing zero coefficients.

17

FC.Setup(1λ, 1n)

1 : return CFC.Setup(1λ, 1n)

FC.Com(ck,x)

1 : return CFC.Com(ck,x)

FC.Open(ck, aux, C)
1 : (f (1), . . . , f (d))← Parse(C)

2 : x(0) ← Parse(aux)

3 : for h ∈ [d] :

// Evaluate and commit to each level

4 : x(h) ← f (h)(x(0),x(1), . . . ,x(h−1))

5 : (comh, auxh)← CFC.Com(ck,x(h))

// Compute the opening for the level

6 : πh ← CFC.Open(ck,

(auxh′)h′∈S(f(h)), f
(h))

7 : return (π1, . . . , πd, com1, . . . , comd−1)

FC.Ver(ck, com, C,y, π)
1 : (f (1), . . . , f (d))← Parse(C)
2 : com0 ← com

3 : (π1, . . . , πd, com1, . . . , comd−1)← π

// Recompute commitment to output

4 : comd ← CFC.Com(ck,y)

5 : for h ∈ [d] :

// Verify all proofs

6 : bh ← CFC.Ver(ck,

(comh′)h′∈S(f(h)), comh, f
(h), πh)

7 : return b1 ∧ · · · ∧ bd

Fig. 1: Construction of our FC for circuits from a CFC for the class Fquad.

Theorem 2. Let CFC = (Setup,Com,Open,Ver) be a chainable functional commitment scheme for
the class of functions Fquad. Then, the scheme FC in Figure 1 is an FC for the class Fn of arithmetic
circuits C : Rn → Rn of width ≤ n.

Let K be a partitioning of Fquad such that CFC is s(n,m, κ)-succinct for Fquad = {Fquad,κ}.
Then FC is d · (smax(n, t) + 1)-succinct for the class Fn = {F(d,t,w)}d∈N,t≤d,w≤n, where smax(n, t) :=
maxκ∈K s(n, t, κ). Moreover, given an additively homomorphic and/or efficiently verifiable CFC, so
is FC.

Proof. Correctness and additive homomorphism of FC follow immediately from the respective prop-
erties of CFC.

Succinctness. If CFC is s(n,m, κ)-succinct for the class of quadratic polynomials in Fquad =
{Fquad,κ}, then FC is s′(n, (d, t))-succinct for Fn = {F(d,t,n)} where s′(n, (d, t)) = d · (smax(n, t)+1).
Indeed, FC.Open produces d−1 commitments comh for h ∈ [d−1], each of them having size bounded
by a fixed polynomial p(λ) = poly(λ). Besides, it generates d CFC evaluation proofs πh, each of
them involving |S(f (h))| ≤ t input commitments, and thus having size ≤ p(λ) · s(n, |S(f (h))|, κ) ≤
p(λ) ·smax(n, t). Hence, we can bound the size of an FC.Open proof by |π| ≤ p(λ) ·d · (smax(n, t)+1).
A particularly relevant case is that for layered circuits we obtain |π| ≤ p(λ) · d · (smax(n, 1) + 1).

We obtain a better succinctness by using a slightly different, yet general, circuit model. To keep
the presentation of the main scheme more understandable, we present this optimization in Section
5.1. The proof size reduction is specific to our CFC construction from pairings (see Section 6.5 for
the resulting efficiency).

Efficient verification. If CFC has amortized efficient verification (Definition 4), we can set
FC.VerPrep(ck, f) to obtain vkh ← CFC.VerPrep(ck, f (h)) for h ∈ [d] and output vkf := (vk1, . . . , vkd).
Then, FC.EffVer simply recomputes the commitment to the output comd and runs CFC.EffVer for
each circuit level. Let TCFC be largest of the running times of CFC.Ver for all CFC instances in the

18

FC construction, and let TCom be the running time of CFC.Com. Then, the running time of FC.Ver is
TFC ≤ d · TCFC + TCom. As the running time of CFC.EffVer is o(TCFC), the running time of FC.EffVer
is d · o(TCFC) + Tcom, which is o(TFC) whenever TCom = o(d · TCFC). Usually, Tcom = O(|y|) (and in
fact Tcom = Ω(|y|)) where |y| ≤ n is the length of the committed vector. Hence, in practice FC has
amortized efficient verification unless d = O(|C|), a case in which the proof size also becomes very
large. We remark that for both our pairing-based and lattice-based CFC instances, the running time
of FC.EffVer is actually bounded by p(λ)(|y|+ |π|) where p(λ) = poly(λ), which is optimal since the
verifier at least needs to parse the proof and the output.

Security. In Lemma 1, we prove that if CFC is evaluation binding, then FC is evaluation binding.
In Appendix A, we show an analogous result for knowledge extractability (and therefore also for
strong evaluation binding by Proposition 4).

Lemma 1. If CFC is evaluation binding (Definition 8), then our FC construction for arbitrary
circuits is also evaluation binding.

Proof. Consider an adversary A who returns a tuple (com, C,y, π,y′, π′) that breaks evaluation
binding, and parse the proofs as follows

π := (π1, . . . , πd, com1, . . . , comd−1)

π′ := (π′
1, . . . , π

′
d, com

′
1, . . . , com

′
d−1)

We will show that, if both proofs π and π′ verify for y and y′ respectively, with y ̸= y′, then we
can construct an adversary B against the evaluation binding of the CFC. We construct B as follows.

First, B is given a commitment key ck and calls A(ck) to obtain the output (com, C,y, π,y′, π′).
Then, B obtains the commitments to the outputs comy ← Com(ck,y) and comy′ ← Com(ck,y′).

If comy = comy′ , then B can break the binding property of the commitment (and hence evalua-
tion binding due to Proposition 1), since comy opens to different y ̸= y′.

Hence, let us assume comy ̸= com′
y, and denote com0 = com′

0 = com. Then, look at both
proofs produced by A and set 1 ≤ h∗ ≤ d to be the smallest index such that comh∗ ̸= com′

h∗ and
comh = com′

h for all h = 0 to h∗ − 1. Notice that such index must exist since, at least, we have
com0 = com′

0 and comd = comy ̸= comy′ = com′
d.

Then, B breaks evaluation binding of CFC by outputting ((comh)h∈S(f (h∗)), f
(h∗), comh∗ , πh∗ ,

com′
h∗ , π′

h∗).
⊓⊔

5.1 Efficiency Tradeoffs

In this section we describe optimization strategies for our FC construction. Our main goals are to
reduce the proof size in many cases, and to support circuits of larger width than initially specified
at setup time.

A refined circuit model. We introduce a variant of our circuit model that results in a notable
reduction of the proof size of our pairing-based CFC in Section 6. The new circuit model differs
from the previous model in that here every quadratic monomial of each polynomial gate f

(h)
k at level

h is assumed to take at least one of its inputs from level h − 1. In particular, the quadratic term
of functions f

(h)
k (x(0), . . . ,x(h−1)) is a linear combination of all products of variables x

(h−1)
i · x(h

′)
j ,

∀i, j ∈ [n], at levels h− 1 and h′ such that 0 ≤ h′ ≤ h− 1.

19

This circuit model also generalizes the standard arithmetic circuit model with fan-in 2 additive or
multiplicative gates. We denote the class of functions in the levels of the new model by Flevel ⊂ Fquad,
which we define as

Flevel = {f ∈ Fquad : S⊗2 (f) ⊆ {(h′,m) ∈ [m]× {m}}}.

Note that we can extend any parametrization Fquad = {Fquad,κ} to Flevel = {Flevel,κ} by setting
Flevel,κ := Flevel∩Fquad,κ. The main advantage of this model is that for any f ∈ Flevel,

∣∣S⊗2 (f)
∣∣ ≤ m,

instead of being ≤ m2 in the more general case. When switching to this model, it is sufficient to
instantiate our FC construction with a CFC scheme that only supports quadratic functions in Flevel

and not all Fquad.

Reducing proof size. Assume that we want to evaluate a circuit C of width w and depth d that is
densely interconnected (i.e. the in-degree t = O(d)) when our commitment key ck supports circuits
of width up to n > w. We present an optimization that reduces the proof size of our FC scheme.

Proposition 2. Let CFC be a s(n,m, κ)-succinct CFC for Flevel = {Flevel,κ} (resp. for Fquad =
{Fquad,κ}), and let Fn = {F(d,t,w)} be the class of circuits parametrized by depth d, in-degree t, and
width w ≤ n. Then, we can construct a s′(n, (d, t, w))-succinct FC scheme FC where s′(n, (d, t, w)) =
d · (smax(n, ⌈dw/n⌉) + 1).

In particular, for circuits of bounded size |C| = d ·w ≤ n, the proof size is the same as for layered
circuits, namely s′(n, (d, t, w)) = d · (smax(n, 1) + 1).

Proof. The construction of the optimized FC scheme consists in reshaping the original input circuit
C into an equivalent semi-layered (i.e., t ≪ d) circuit C′ of depth d and width bounded by n. The
FC scheme is then identical to the scheme in Figure 1. In fact, as FC needs to support circuits of
any width w ≤ n, FC.Setup(1λ, n) outputs ck← CFC.Setup(1λ, 1n).

Let r = ⌊n/w⌋. For each level h of C with values x(h), we construct level h in circuit C′ with
values z(h) as described below.

– Let z(0) := x. For h = 1, . . . , r−1, set z(h) := x(0)||x(1)|| · · · ||x(h) as the concatenation of variables
from previous levels. Then, define the wiring in C′ by introducing relay gates between levels, such
that x(0) is copied to levels h = 1, . . . , r − 1, x(1) is copied to levels h = 2, . . . , r − 1, etc. Note
that, up to level r, C′ is the equivalent of C as a layered circuit.

– At level r, set z(r) := x(r). Note that z(r) only depends on inputs at level r − 1 in C′, since all
x(0), . . . ,x(r−1) are duplicated at level z(r−1).

– For levels h = r + 1, . . . , 2r − 1, expand again as z(h) := x(r)||x(r+1)|| · · · ||x(h). Note that values
at level h depend only on levels r− 1 and h− 1, as z(r−1) contains all values from levels 0 to r− 1
in C.

– Repeat the steps above, bootstrapping the circuit at levels 2r, 3r, . . . , d.

The functions f (1), . . . , f (d) that describe the levels of C′ are such that level h has in-degree
|S(f (h))| = ⌈h/r⌉. Hence, if the CFC is s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. for Fquad =
{Fquad,κ}) then the proof size of the FC scheme for C′ becomes

|π| =
d−1∑
h=0

s(n, ⌈h/r⌉, κ) + 1 ≤ d · (smax(n, ⌈d/r⌉) + 1).

20

Note that the parameters can be tuned in a per-level basis, allowing for more succinct proofs in
practice or when the initial in-degree is low.

Supporting circuits of arbitrary width. Suppose that the parameters of the FC scheme are
set up for circuits of bounded width n, and that we want to evaluate a circuit C of width w > n.
The following result shows that this is possible at the cost of increasing the proof size.

Proposition 3. Let CFC be a s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. for Fquad = {Fquad,κ}).
Let FC be our construction in Figure 1 for the class of circuits Fn = {F(d,t,w)} of bounded width
w ≤ n. Then, we can construct an FC scheme F̃C for F = {F(d,t,w)} for any w ∈ N such that
F̃C.Setup(1λ) = FC.Setup(1λ, n) where the proof size is |π| ≤ d · ⌈w/n⌉ · (smax(n, t · ⌈w/n⌉) + 1).

Proof. We describe F̃C in two steps. First, we introduce a circuit transformation from the original
C to an equivalent C′ of width n and larger depth. Then, we describe the F̃C.Com, F̃C.Open and
F̃C.Ver algorithms. We can construct C′ as follows:

– Let r = ⌈w/n⌉. For each level x(h), h = 0, . . . , d of C, define sub-levels z(h,s) with indices
(h, 1), . . . , (h, r) in C′ as the natural split of x(h) in r blocks, i.e., z(h,s) = (x

(h)
(s−1)n, x

(h)
(s−1)n+1, . . . , x

(h)
sn−1)

for s ∈ [r].
– For each level function f (h) : Rmw → Rw corresponding to C, let m′ = m ·r and define r functions

g(h,s) : Rm′n → Rn for s ∈ [r] such that g(h,s)(z(0,1), . . . ,z(h−1,r)) = z(h,s). Note that these
functions can be built from a restriction of f (h) to a subset of its outputs.

The commit algorithm F̃C.Com(ck,x) partitions the input x ∈ Rw in r blocks x(1), . . . ,x(r) of
size n as described above, obtains (com(s), aux(s))← Com(ck,x(s)). It outputs ˜com = (com(1), . . . , com(r))
and ˜aux = (aux(1), . . . , aux(r)).

The opening algorithm F̃C.Open(ck, ˜aux, C) works as follows:

– Obtain C′ from C as presented above, parse (z(0,1), . . . ,z(0,r))← Parse(˜aux), and compute C′(z(0,1), . . . ,z(0,r))
and all the intermediate values z(h,s) for h ∈ [d] and s ∈ [r].

– Commit to each z(h,s) as (com(h,s), aux(h,s))← CFC.Com(ck, z(h,s)) for h ∈ [d− 1] and s ∈ [r].
– Compute the opening proofs for all functions,

∀h ∈ [d], s ∈ [r] : π(h,s) ← CFC.Open(ck, (aux(h′,s′))h′∈S(f (h)),s′∈[r], g
(h,s)).

– Return π̃ = (π(h,s), com(h,s))h∈[d],s∈[r].

The verification algorithm F̃C.Ver(ck, ˜com, f,y, π̃) first computes r commitments to the output
z(d,s) ← Com(y(s)) for s ∈ [r] and then verifies all opening proofs.

Overall, if the CFC is s(n,m, κ)-succinct for Flevel = {Flevel,κ} (resp. Fquad = {Fquad,κ}), and the
original circuit C ∈ F(d,t,w) (i.e., the in-degree of C is bounded by t), then the proof size of the FC
scheme for C′ becomes

|π| = (d− 1)r + r ·
d−1∑
h=0

s(n, hr, κ) ≤ dr · (smax(n, tr) + 1).

21

6 Paring-based CFC for Quadratic Functions

We present our construction of a chainable functional commitment for quadratic functions based on
pairings. With our CFC, one can commit to a set of vectors x1, . . .xm of length n and then open
the commitment to a quadratic function f : Fmn → Fn, for any m = poly(λ). The opening proofs of
our scheme are quadratic in the number m of input vectors, but constant in the (possibly padded)
length n of each input vector and of the output. Security is proven in the standard model based on
a new falsifiable assumption that we justify in the generic bilinear group model. In Section 6.5 we
discuss the FCs for circuits that we obtain by applying the generic transform of Section 5 to this
pairing-based CFC.

We present our CFC with deterministic commitments and openings. We detail how to make
our commitments perfectly com-hiding in Section 6.8. We note that the FCs for circuits obtained
from the com-hiding CFC are also com-hiding, and their openings can be made zero-knowledge by
applying Theorem 1, which we can efficiently instantiate using, e.g., the Groth-Sahai [GS08] NIZK.

6.1 Preliminaries on Bilinear Groups and Assumption

A bilinear group generator BG(1λ) is an algorithm that returns bgp := (q,G1,G2,GT , e, g1, g2),
where G1, G2, GT are groups of prime order q, g1 ∈ G1 and g2 ∈ G2 are fixed generators, and
e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear map. In our work we use
Type-3 groups in which it is assumed that there is no efficiently computable isomorphism between
G1 and G2. We use the bracket notation of [EHK+13] for group elements: for s ∈ {1, 2, T} and
x ∈ Zq, [x]s denotes gxs ∈ Gs. We use additive notation for G1 and G2 and multiplicative notation
for GT . We note that given an element [x]s ∈ Gs, for s = 1, 2, and a scalar a, one can efficiently
compute a · [x] = [ax] = gaxs ∈ Gs; given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently
compute [ab]T = e([a]1, [b]2).

We prove that our construction satisfies evaluation binding under a new falsifiable assumption,
called HintedKernel (HiKer), that we justify in the generic group model (see Appendix B). The
name of the assumption comes from its similarity with the KerMDH assumption of [MRV16] which
for matrices [A]2 from certain (random) distributions asks the adversary to find a nonzero vector
[z]1 such that Az = 0. In our case the adversary is challenged to find a nonzero [u, v]1 such that
uη + v = 0, when given [1, η]2 but also other group elements, the “hints”, that depend on η and
other random variables.

Definition 9 (n-HiKer Assumption). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group set-
ting, let n ∈ N and let G1,G2 be the following two sets of Laurent monomials in Zq[S1, T1, . . . , Sn, Tn, H]:

G1(S,T , H) := {Si, Ti}i∈[n] ∪ {Si · Tj}i,j∈[n] ∪
{
Si′

Si
· Ti ·H

}
i,i′∈[n]
i ̸=i′

∪
{
Si′ · Tj′

Si · Tj
·H
}

i,j,i′,j′∈[n]
(i,j)̸=(i′,j′)

G2(S,T , H) := {H} ∪ {Si}i∈[n] ∪
{

1

Si
· Ti ·H,

1

Si
·H
}

i∈[n]
∪
{

1

Si
· 1
Tj
·H
}

i,j∈[n]

The n-HintedKernel (n-HiKer) assumption holds if for every n = poly(λ) and any PPT A, the
following advantage is negligible

Advn-HiKer
A (λ) = Pr

[
(U, V) ̸= (1, 1)G1 ∧

e(U, [η]2) = e(V, [1]2)

∣∣∣∣∣ (U, V)← A

(
bgp,

[G1(σ, τ , η)]1,
[G2(σ, τ , η)]2

)]

22

where the probability is over the random choices of σ, τ , η and A’s random coins.

6.2 Our CFC Construction

As defined in the previous section we express f ∈ Fquad through a set of matrices F(h) ∈ Fn×n and
G(h,h′) ∈ Fn×n2 , and a vector e ∈ Fn such that

f(x(1), . . . ,x(m)) = e+
∑

h∈S1(f)

F(h) · x(h) +
∑

(h,h′)∈S⊗
2 (f)

G(h,h′) · (x(h) ⊗ x(h′)) (5)

For the sake of defining the succinctness of our CFC we parametrize the class Fquad by the size
of the quadratic support of f . Formally, let K = {0, 1, . . . ,m(m + 1)/2}. Then we partition Fquad

as {Fquad,κ}κ∈K where each Fquad,κ = {f ∈ Fquad : S⊗2 (f) = κ}. Note that the parametrization
extends naturally to the class Flevel as described in Section 5. Due to the definition of Flevel, in that
case we have at most m partitions, i.e,. Flevel = {Flevel,κ}mκ=0.

Setup(1λ, 1n) Let n ≥ 1 be an integer representing the width of each of the inputs of the functions to
be computed at opening time. Generate a bilinear group description bgp := (q,G1,G2,GT , e, g1, g2)←
BG(1λ), and let F := Zq.
Next, sample random α,β,γ ←$ Fn, ηα, ηβ, ηγ ←$ F, and output

ck :=



[α]1 , [α]2 , [β]1 , [γ]1 , [α⊗ β]1 , [ηα]2 , [ηβ]2 , [ηγ]2{[
αi

γi′
γi
ηα

]
1
,
[
αi′
αi

βiηβ

]
1

}
i,i′∈[n]
i ̸=i′

{[
αi′βj′
αiβj

γkηγ

]
1

}
i,j,i′,j′,k∈[n]
(i,j) ̸=(i′,j′){[

αiηα
γi

]
2
,
[
βiηβ
αi

]
2

}
i∈[n]

,
{[

γkηγ
αi

]
2

}
i,k∈[n]

{
,
[
γkηγ
αiβj

]
2

}
i,j,k∈[n]

 .

Com(ck,x) output com := [⟨x,α⟩]1 and aux = x.

Open(ck, (auxi)i∈[m], f)→ π Let F(h) ∈ Fn×n for h ∈ S1(f), G(h,h′) ∈ Fn×n2 for (h, h′) ∈ S⊗2 (f),
and e ∈ Fn be the matrices and vectors associated to f : Fmn → Fn. The opening algorithm
computes the output y = f(x(1), . . . ,x(m)) and proceeds as follows.

– For every h ∈ S2(f): compute X
(2)
h := [⟨x(h),α⟩]2, X(β)

h := [⟨x(h),β⟩]1, which are commitments
to x(h) under α in G2 and under β in G1, resp.

– For every h ∈ S2(f): compute a linear map opening proof for the identity function, to show that
Xh and X

(β)
h open to the same value:

π
(β)
h :=

∑
i,i′∈[n]
i ̸=i′

x
(h)
i′ ·

[
αi′

αi
βiηβ

]
1

– For every pair of inputs x(h),x(h′) such that (h, h′) ∈ S⊗2 (f), compute a commitment to their
tensor products as follows:

Zh,h′ :=
∑

i,j∈[n]

x
(h)
i x

(h′)
j · [αiβj]1 = [⟨x(h) ⊗ x(h′),α⊗ β⟩]1.

23

– Compute a linear map opening proof to show that the vector y satisfies equation (5), with
respect to all the inputs x(h) committed in Xh and the inputs x(h) ⊗ x(h′) committed in Zh,h′ :

π(γ) :=
∑

h∈S1(f)

∑
i,i′,k∈[n]

i ̸=i′

F
(h)
k,i · x

(h)
i′ ·

[
αi′

αi
γkηγ

]
1

+
∑

(h,h′)∈S⊗
2 (f)

∑
i,j,i′,j′,k∈[n]
(i,j)̸=(i′,j′)

G
(h,h′)
k,(i,j) · x

(h)
i′ x

(h′)
j′ ·

[
αi′βj′

αiβj
γkηγ

]
1

Note that π(γ) is in fact a proof for the vector e − t; the linear shift will be addressed by the
verifier in equation (11).

– Commit to the output y under γ by computing Y (γ) := [⟨y,γ⟩]1. Then, compute a linear map
opening proof for the identity function, to show that Y (γ) and the commitment to the output
comy ← Com(ck,y) (which is under α) open to the same value:

π(α) :=
∑

i,i′∈[n]
i ̸=i′

yi′ ·
[
αi

γi′

γi
ηα

]
1

– Return π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗

2 (f), Y
(γ), π(α), π(γ)

)
.

Ver(ck, (comi)i∈[m], comy, f, π)→ b ∈ {0, 1} Parse the proof π as above and set Xh := comh. Output
1 if all the following checks pass and 0 otherwise:
– Verify the consistency of all the commitments. Namely, verify that each Xh and X

(2)
h are com-

mitments to the same value in G1 and G2:

∀h ∈ S2(f) : e (Xh, [1]2)
?
= e

(
[1]1, X

(2)
h

)
(6)

– Verify the linear map commitment proofs π
(β)
h that both X

(β)
h , Xh commit to the same value in

different sets of parameters:

∀h ∈ S2(f) : e

Xh,
∑
i∈[n]

[
βiηβ
αi

]
2

 ?
= e

(
π
(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
(7)

– Verify the consistency of the commitments to the tensor products, i.e., verify that Zh,h′ is a
commitment to x(h) ⊗ x(h′):

∀(h, h′) ∈ S⊗2 (f) : e
(
Zh,h′ , [1]2

) ?
= e

(
X

(β)
h′ , X

(2)
h

)
(8)

– Verify the linear map commitment proof π(α) that both comy, Y
(γ) commit to the same value in

different sets of parameters:

e

Y (γ),
∑
i∈[n]

[
αiηα
γi

]
2

 ?
= e

(
π(α), [1]2

)
e (comy, [ηα]2) (9)

24

– Verify the linear map commitment proof to check that, intuitively, Y (γ) is a commitment under γ
to the output of f , computed from the inputs committed in Xh and Zh,h′ . To this end, compute
the encoding of the matrices F(h) for h ∈ S1(f), G(h,h′) for (h, h′) ∈ S⊗2 (f) and the vector e as
follows. Let Θ = [⟨e,γ⟩]1 and

Φh :=
∑

i,k∈[n]

F
(h)
k,i ·

[
γkηγ
αi

]
2

, Γh,h′ :=
∑

i,j,k∈[n]

G
(h,h′)
k,(i,j) ·

[
γkηγ
αiβj

]
2

(10)

and then verify that∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗
2 (f)

e
(
Zh,h′ , Γh,h′

) ?
= e

(
π(γ), [1]2

)
e
(
Y (γ) ·Θ−1, [ηγ]2

)
. (11)

Theorem 3. Assume that the n-HiKer assumption holds for a bilinear group setting generated by
BG. Then the construction CFC described above is an evaluation binding CFC scheme for the class
Fquad of quadratic functions over any m = poly(λ) vectors of length ≤ n, that has efficient verifi-
cation and is additively homomorphic. Considering the partitioning of Fquad = {Fquad,κ}

m(m+1)/2
κ=0 ,

CFC is s(n,m, κ)-succinct for s(n,m, κ) = (κ + 3m + 3). Furthermore, when executed on the class
of functions Flevel ⊂ Fquad introduced in Section 5.1 and partitioned as Flevel = {Flevel,κ}mκ=0, then
CFC is (4κ+ 3)-succinct.

In the following sections we prove the theorem.

6.3 Correctness

To prove correctness, consider honestly generated input commitments Xh =
[
⟨x(h),α⟩

]
1

for h ∈ [m]
and an honestly generated opening

π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗

2 (f), Y
(γ), π(α), π(γ)

)
for a quadratic function f represented by the matrices e,F(h),G(h,h′) for h ∈ S1(f) and (h, h′) ∈
S⊗2 (f).

The correctness of equations (6) and (8) follows easily by construction since

e (Xh, [1]2) = e
([
⟨x(h),α⟩

]
1
, [1]2

)
= e

(
[1]1 ,

[
⟨x(h),α⟩

]
2

)
= e

(
[1]1 , X

(2)
h

)
,

e
(
Zh,h′ , [1]2

)
= e

([
⟨x(h) ⊗ x(h′),α⊗ β⟩

]
1
, [1]2

)
= e

 ∑
i,j∈[n]

x
(h)
i x

(h′)
j αiβj


1

, [1]2


= e

([
⟨x(h′),β⟩

]
1
,
[
⟨x(h),α⟩

]
2

)
= e

(
X

(β)
h′ , X

(2)
h

)
.

The correctness of equation (7) can be seen as follows. Given h ∈ S2(f), we have that

e

Xh,
∑
i∈[n]

[
βiηβ
αi

]
2

 =

∑
i∈[n]

x
(h)
i αi

 ·
∑

i∈[n]

βiηβ
αi


T

=

 ∑
i,i′∈[n]

x
(h)
i′

αi′

αi
βiηβ


T

=

 ∑
i,i′∈[n]
i ̸=i′

x
(h)
i′

αi′

αi
βiηβ +

∑
i∈[n]

x
(h)
i βiηβ


T

= e
(
π
(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
.

25

Similarly, for equation (9) we have that

e

Y (γ),
∑
i∈[n]

[
αiηα
γi

]
2

 =

∑
i∈[n]

yiγi

 ·
∑

i∈[n]

αiηα
γi


T

=

 ∑
i,i′∈[n]

yi′
γi′

γi
αiηα


T

=

 ∑
i,i′∈[n]
i ̸=i′

yi′αi
γi′

γi
ηα +

∑
i∈[n]

yiαiηα


T

= e
(
π(α), [1]2

)
e (comy, [ηα]2) .

Finally, the correctness of equation (11) can be proven in an analogous way. First of all, we expand
the pairing coefficients on the LHS in GT ,

e (Xh, Φh) =

∑
k∈[n]

∑
i∈[n]

F
(h)
k,i · x

(h)
i

 γkηγ +
n∑

i,i′,k=1
i ̸=i′

F
(h)
k,i · x

(h)
i′ ·

αi′

αi
γkηγ


T

e
(
Zh,h′ , Γh,h′

)
=

∑
k∈[n]

 ∑
i,j∈[n]

G
(h,h′)
k,(i,j) · x

(h)
i x

(h′)
j

 γkηγ +
∑

i,j,i′,j′,k∈[n]
(i,j) ̸=(i′,j′)

G
(h,h′)
k,(i,j) · x

(h)
i′ x

(h′)
j′ ·

αi′βj′

αiβj
γkηγ


T

.

By using the identities above and equation (5), we have∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗
2 (f)

e
(
Zh,h′ , Γh,h′

)

=

 ∑
h∈S1(f)
i,k∈[n]

F
(h)
k,i · x

(h)
i · γkηγ +

∑
(h,h′)∈S⊗

2 (f)
i,j,k∈[n]

G
(h,h′)
k,(i,j) · x

(h)
i x

(h′)
j · γkηγ


T

e
(
π(γ), [1]2

)

=

∑
k∈[n]

(yk − ek)γkηγ


T

e
(
π(γ), [1]2

)
= e

(
comy ·Θ−1, [ηγ]2

)
e
(
π(γ), [1]2

)
.

Note that from the equations above it also follows that CFC is additively homomorphic.

6.4 Succinctness

An opening proof π to a given function f ∈ Fquad,κ includes
∣∣S⊗2 (f)

∣∣ = κ commitments to tensored
inputs X̃h,h′ , and the triples of elements {X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), which are 3|S2(f)| group elements.

Finally, π includes three additional group elements Y (γ), π(α), π(γ). Hence, the proof consists of
κ+ 3|S2(f)|+ 3 group elements, and essentially ranges from O(1) (in fact π has only 3 elements if
f is a linear function) to O

(
m2
)

depending on the quadratic support of f . Precisely, considering a
fixed polynomial p(λ) that upper bounds the size of a group element from G1 or G2, our CFC is
O(κ)-succinct.

26

When the CFC is executed on functions from the class Flevel = {Flevel,κ} introduced in Section
5.1 we have that |S2(f)| = κ ≤ m. In this case a CFC opening contains 4κ+ 3 group elements and
our CFC is also O(m)-succinct.

6.5 Resulting Instantiations of FC for Circuits

We summarize the FC schemes that result from instantiating our generic construction of Section 5
with our pairing-based CFC.

Corollary 1. Assume that the n-HiKer assumption holds for BG. Then the following statements
hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w ≤ n that
is O(d · t)-succinct. In particular, the FC is O(d2)-succinct for an arbitrary arithmetic circuit of
multiplicative depth d, and is O(d)-succinct for a layered arithmetic circuit of multiplicative depth
d.

2. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w ≤ n
that is O

(
d2 · w · n−1

)
-succinct.

3. There exists an FC scheme for the class of arithmetic circuits of size ≤ S, that is O(d)-succinct
where d is the multiplicative depth of the circuit.

4. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of circuits of arbitrary
width w > w0 that is O

(
d · t · (w/w0)

2
)
-succinct.

Proof. Consider the FC construction in Section 5 instantiated with our pairing-based CFC for
quadratic functions. More precisely, we consider arithmetic circuits following the model described
in Section 5.1 which allows us to use CFC only with quadratic functions in Flevel. The statements
of the corollary can be obtained by combining the following observations.

1. For arbitrary circuits, note that the in-degree t of the circuit upper bounds the number m of inputs
used in the CFC, and thus an FC proof consists of d CFC proofs, which makes a total of 4dt+3d
group elements. O(d2)-succinctness for arbitrary arithmetic circuits follows from the fact that an
arbitrary arithmetic circuit of depth d may have in-degree up to d, while O(d)-succinctness for
layered circuits follows from the in-degree being 1 in such circuits.

2. The statement follows from the transformation that we present in Proposition 2.
3. To see this statement, let us consider the folklore transformation from arbitrary to layered arith-

metic circuits (which is a special case of the transformation in Proposition 2). If one starts from
a circuit C of width n and depth d, the circuit C′ resulting from this transformation has the same
depth, but width ≤ n · d, which is upper bounded by the circuit size S.

4. The statement follows directly from Proposition 3, where w0 is the maximum width supported
by the parameters of the given FC.

6.6 Proof of Security

In this section, we prove that our CFC satisfies evaluation binding. In Appendix C, we also show
that our CFC satisfies knowledge extractability by relying on a non-falsifiable assumption.

27

Consider an adversary A who returns a tuple ((comh)h∈[m], comy, f, π, ˜comy, π̃) that breaks eval-
uation binding, set Xh := comh, and parse the proofs as follows

π :=
(
{X(2)

h , X
(β)
h , π

(β)
h }h∈S2(f), {Zh,h′}(h,h′)∈S⊗

2 (f), Y
(γ), π(α), π(γ)

)
π̃ :=

(
{X̃(2)

h , X̃
(2)
h , π̃

(β)
h }h∈S2(f), {Z̃h,h′}(h,h′)∈S⊗

2 (f), Ỹ
(γ), π̃(α), π̃(γ)

)

Recall that by definition of evaluation binding, if A’s attack is successful, both proofs must verify
for the same function f , the same input commitments Xh for h ∈ [m], and for different output
commitments comy ̸= ˜comy.

The intuition of the proof is that A can cheat in three possible ways, for which we define three
events E1, E2, E3 as follows:

– E1 is the event that Y (γ) = Ỹ (γ). As comy ̸= ˜comy, this implies an evaluation binding break in
the linear map commitment proof in equation (9).

– E2 is the event that E1 does not happen (i.e., Y (γ) ̸= Ỹ (γ)) and that X
(β)
h∗ ̸= X̃

(β)
h∗ for some

h∗ ∈ S2(f). This means that the proofs π
(β)
h∗ , π̃

(β)
h∗ open the commitment comh∗ to two different

output commitments for the identity function, which breaks evaluation binding in equation (7).

– E3 is the event that neither E1 nor E2 occur. In this case, we will show that evaluation binding
breaks in equation (11).

For any of these events, we will use A’s output to break the n-HiKer assumption if this is
embedded into ck. For this embedding, B makes a guess ŝ ∈ {0, 1} such that ŝ = 0 corresponds to a
guess that event E1 occurs while ŝ = 1 corresponds to a guess that either E2 or E3 will occur. This
ŝ is perfectly hidden to A.

Next we describe how to build B out of A.

Commitment key generation. Let B be an adversary against the n-HiKer assumption. B uni-
formly samples a value ŝ←$ {0, 1} and simulates ck as follows.

Case ŝ = 0. B samples α,β ←$ Fn, ηβ, ηγ ←$ F and implicitly sets γ := σ and ηα := η from the
input of the assumption. It is easy to see that this implicit setting allows B to compute all the
elements in the first row of ck, namely:

[α,β,γ,α⊗ β]1 , [α, ηα, ηβ, ηγ]2

We show how B can simulate the remaining elements in the second and third rows of ck starting
from the inputs from the n-HiKer assumption as follows:

28

∀i, i′ ∈ [n], i ̸= i′ : αi

[
ησi′
σi

]
1

=

[
αi

γi′

γi
ηα

]
1

αi′
αi

βiηβ [1]1 =

[
αi′

αi
βiηβ

]
1

∀i, j, i′, j′, k ∈ [n] : (i, j) ̸= (i′, j′) :
αi′βj′
αiβj

ηγ [σk]1 =

[
αi′βj′

αiβj
γkηγ

]
1

∀i ∈ [n] : αi

[
η
σi

]
2

=

[
αiηα
γi

]
2

βiηβ
αi

[1]2 =

[
βiηβ
αi

]
2

∀i, k ∈ [n] :
ηγ
αi

[σk]2 =

[
γkηγ
αi

]
2

∀i, j, k ∈ [n] :
ηγ

αiβj
[σk]2 =

[
γkηγ
αiβj

]
2

As one can notice, in this case of ŝ = 0 we embed in the commitment key only a subset of the
elements of the assumption. This means that the reduction for adversaries causing event E1 can
actually be done based on a weaker version of the assumption which includes only the subset of the
elements that we need for this case.

Case ŝ = 1. B samples ηα, rβ, rγ ←$ F and γ ←$ Fn and implicitly sets α := σ,β := τ , ηβ :=
rβ · η, ηγ := rγ · η. As for the case of ŝ = 0, it is easy to see that this implicit setting allows B to
compute all the elements in the first row of ck, namely [α,β,γ,α⊗ β]1 , [α, ηα, ηβ, ηγ]2.

Next, we show how B can simulate the remaining elements in the second and third rows of ck
starting from the inputs from the n-HiKer assumption as follows:

∀i, i′ ∈ [n], i ̸= i′ :
γi′
γi
ηα [σi]1 =

[
αi

γi′

γi
ηα

]
1

rβ

[
η
σi′
σi
τi

]
1

=

[
αi′

αi
βiηβ

]
1

∀i, j, i′, j′, k ∈ [n] : (i, j) ̸= (i′, j′) : rγγk

[
η
σi′τj′
σiτj

]
1
=

[
αi′βj′

αiβj
γkηγ

]
1

∀i ∈ [n] : ηα
γi

[σi]2 =

[
αiηα
γi

]
2

rβ

[
ητi
σi

]
2

=

[
βiηβ
αi

]
2

∀i, k ∈ [n] : rγγk

[
η
σi

]
2

=

[
γkηγ
αi

]
2

∀i, j, k ∈ [n] : rγγk

[
η

σiτj

]
2

=

[
γkηγ
αiβj

]
2

29

Execution of A. Once having generated ck as described above, B runs A(ck), receives the out-
put ((comh)h∈[m], comy, f, π, ˜comy, π̃) and parses the proofs as before. Notice that ck is perfectly
distributed as the one generated by Setup and thus the value ŝ is perfectly hidden to A.

The reduction proceeds differently according to the output produced by A, that we split in the
events E1, E2, E3 as defined above.

E1 occurs: If ŝ ̸= 0, then B aborts. Otherwise it proceeds as follows. Recall that in this case we
have that as Y (γ) = Ỹ (γ), then π(α), π̃(α) open to different comy, ˜comy. Therefore, by equation (9)
we have that

e
(
π(α), [1]2

)
e (comy, [ηα]2) = e

Y (γ),
∑
i∈[n]

[
αiηα
γi

]
2

 = e
(
π̃(α), [1]2

)
e (˜comy, [ηα]2)

Then, B returns (U, V) such that

U := ˜comy/comy, V := π(α), /π̃(α).

If B did not abort, then ŝ = 0. Thus, ηα = η and e (U, [η]2) = e (V, [1]2).

E2 occurs: If ŝ ̸= 1, then B aborts. Otherwise, let h∗ be some index such that X
(β)
h∗ ̸= X̃

(β)
h∗ ; note

that h∗ must exist by definition of event E2. Similarly as before, from equation (7) we have that

e
(
π
(β)
h∗ , [1]2

)
e
(
X

(β)
h∗ , [ηβ]2

)
= e

Xh∗ ,
∑
i∈[n]

[
βiηβ
αi

]
2

 = e
(
π̃
(β)
h∗ , [1]2

)
e
(
X̃

(β)
h∗ , [ηβ]2

)
.

Then, B returns (U, V) such that

U := (X̃
(β)
h∗ /X

(β)
h∗)rβ , V := π

(β)
h∗ /π̃

(β)
h∗ .

If B did not abort, then ŝ = 1. Thus, ηβ = rβ · η and e (U, [η]2) = e (V, [1]2).

E3 occurs: If ŝ ̸= 1, then B aborts. Otherwise, B proceeds as follows. First, note that since E1

and E2 did not occur, then Y (γ) = Ỹ (γ) and X
(β)
h = X̃

(2)
h for every h ∈ S2(f). Also, by equation (6)

and by the non-degeneracy of the pairing, we have

e (Xh, [1]2) = e
(
[1]1 , X

(2)
h

)
= e

(
[1]1 , X̃

(2)
h

)
which implies that X

(2)
h = X̃

(2)
h .

From the equality above we can use equation (8) to also conclude that Zh,h′ = Z̃h,h′ for all (h, h′) ∈
S⊗2 (f). Then, since both proofs satisfy equation (11), we have

e
(
π(γ), [1]2

)
e
(
Y (γ) ·Θ−1, [ηγ]2

)
=

∏
h∈S1(f)

e (Xh, Φh) ·
∏

(h,h′)∈S⊗
2 (f)

e
(
Zh,h′ , Γh,h′

)
= e

(
π̃(γ), [1]2

)
e
(
Ỹ (γ) ·Θ−1, [ηγ]2

)
.

The reduction returns (U, V) computed as follows:

U := (Ỹ (γ)/Y (γ))rγ , V := π(γ)/π̃(γ).

If B did not abort, then ŝ = 1 and ηγ = rγ · η. Thus, e (U, [η]2) = e (V, [1]2). Since ŝ is perfectly

hidden B aborts with probability 1/2. Hence, if A is successful with probability ϵ, then B breaks
the assumption with probability ϵ/2.

30

6.7 Efficient Verification

Our chainable functional commitment scheme CFC supports amortized efficient verification. We
define the algorithms VerPrep and EffVer below, following Definition 4.

VerPrep(ck, f) Parse ck and compute the encodings Θ,Φh, Γh,h′ of f as done in the CFC.Ver al-
gorithm following equation (10). Also, compute the encodings in equations (7) and (9), Ψ (β) =∑

i∈[n]

[
βiηβ
αi

]
2

and Ψ (α) =
∑

i∈[n]

[
αiηα
γi

]
2
.

Output vkf := ({Θ,Φh, Γh,h′}(h,h′)∈S⊗
2 (f), Ψ

(α), Ψ (β)).
EffVer(vkf , (comh)h∈[m], comy, π) Parse vkf , π and carry out all the pairing checks in the Ver algo-
rithm, i.e., verify equations (6), (7), (8), (9), (11).

Following the description of succinctness in Section 6.4, given any f ∈ Fquad,κ then EffVer needs
to parse a proof that has O(κ) group elements. Then, it verifies ω ≤ κ pairing checks in equations
(6) and (7), κ checks in equation (8), a single check in equation (7), and a single check involving
κ + ω products in equation (11). Assuming that the running time of each pairing computation is
bounded by some polynomial p(λ) = poly(λ), the running time of EffVer is therefore O(p(λ) · |κ|) =
O(p(λ) · |π|), which is essentially optimal.

6.8 Commitment Hiding

Our CFC construction can be made perfectly com-hiding (Definition 5) by adding randomness to
the commitment. We describe the transformation C̃FC = (S̃etup, C̃om, Õpen, Ṽer) below.

S̃etup(1λ, 1n) Output c̃k← Setup(1λ, 1n+1).

C̃om(c̃k,x) Let r ←$ F. Output (com, aux) where com← Com(c̃k,x) + r · [αi+1]1 and aux = (x, r).

Õpen(c̃k, (auxi)i∈[m], f) Let auxi = (x(i), r(i)). Output Open(c̃k, (aux)i∈[m], f
′) where f ′ = (f, 0).

Ṽer(c̃k, (comi)i∈[m], comy, f, π) Output Ver(c̃k, (comi)i∈[m], comy, f, π).

For the above scheme, it is easy to construct a simulator Sim as follows.

SimSetup(1
λ, n) Sample α←$ Fn+1 and generate c̃k as in Setup(1λ, n+1), sampling additional field

elements when necessary. Output (c̃k, td) where td = α.
SimCom(td) Sample r ←$ F and output (com, aux) where com = r · [αn+1]1 and aux = (0, r).
SimEquiv(td, com, aux,x) The algorithm uses the field elements in α to find a value r′ ∈ F such that

com = C̃om(x, r′). It simply obtains the solution r′ of the linear equation ⟨x,α⟩+αn+1r
′ = αn+1r

and outputs aux = (x, r′).

7 Lattice-based CFC for Quadratic Functions

In this section, we present a lattice-based construction of a CFC for quadratic functions. Our
construction can be seen as a lattice-analogue of the pairing-based scheme presented in Section 6
obtained via a slight generalisation of the translation technique in [ACL+22].

31

7.1 Lattice Preliminaries

Let R = Z[ζ], where ζ is a fixed primitive m-th root of unity, be the ring of integers of the m-th
cyclotomic field of degree d = φ(m), where elements are represented by their coefficient embedding
x =

∑d−1
i=0 xi · ζi. If m is a prime-power (resp. power of 2), we call R a prime-power (resp. power-

of-two) cyclotomic ring. For the rest of this section we will assume that m = poly(λ).
For x ∈ R, write ∥x∥ := maxd−1

i=0 |xi| for the infinity norm induced on R by Z. The norm
generalises naturally to vectors u = (u1, . . . , un) ∈ Rn, with ∥u∥ := maxni=1∥ui∥. For q ∈ N, write
Rq := R/qR. We always assume that q is a (rational) prime. By a slight abuse of notation, we
identity Rq with its balanced representation, i.e. if x =

∑d−1
i=0 xi · ζi ∈ Rq then |xi| ≤ q/2 for all i.

The set of units, i.e., invertible elements, in Rq is denoted by R×
q .

The ring expansion factor γR of R is defined as γR := maxa,b∈R
∥a·b∥

∥a∥·∥b∥ . It is known [AL21] that
if R is a prime-power cyclotomic ring then γR ≤ 2 · d, and if R is a power-of-two cyclotomic ring
then γR ≤ d.

Lattice Trapdoors. We will make use of the following standard algorithms (e.g. [GPV08, MP12,
GM18]) associated to lattice trapdoors and their properties for sufficiently large “leftover hash lemma
parameter” lhl(R, η, q, β) = O(η logβ q):

– (A, tdA) ← TrapGen(R, 1η, 1ℓ, q, β): The trapdoor generation algorithm generates a matrix A ∈
Rη×ℓ

q along with a trapdoor tdA. It is assumed that (η, ℓ, q, β) are implicitly specified by tdA.
When ℓ ≥ lhl(R, η, q, β), the distribution of A is within negl(λ) statistical distance of U(Rη×ℓ

q).
– u← SampD(R, 1η, 1ℓ, q, β′): The domain sampling algorithm samples a vector u ∈ Rℓ with norm
∥u∥ ≤ β′. When β′ ≥ β and ℓ ≥ lhl(R, η, q, β), then the distribution of (A,A · u mod q) for a
uniformly random A←$Rη×ℓ

q is within negl(λ) statistical distance of U(Rη×ℓ
q ×Rη

q).
– u← SampPre(tdA,v, β′): The preimage sampling algorithm inputs a vector v ∈ Rn

q and outputs
a vector u ∈ Rℓ. If the parameters (η, ℓ, q, β) of tdA satisfy β′ ≥ β and ℓ ≥ lhl(R, η, q, β), then u
and v satisfy A ·u = v mod q and ∥u∥ ≤ β′. Furthermore, u is within negl(λ) statistical distance
to u← SampD(R, 1n, 1ℓ, q, β′) conditioned on A · u = v mod q.

7.2 Hardness Assumptions

The k-R-ISIS assumption family17 was recently introduced in [ACL+22] as a natural extention of the
standard short integer solution (SIS) assumption and a natural lattice-analogue of a certain class
of pairing-based assumptions. The k-R-ISIS assumption family was accompanied by a translation
technique outlined in [ACL+22] for translating pairing-based schemes and assumptions to their
lattice-analogues.

For instance, a certain k-R-ISIS assumption could be parametrised by a set G of monomials. It
states that even when given short preimages ug satisfying A · ug = t · g(v) mod q for all g ∈ G, it
is hard to find a short non-zero preimage u∗ satisfying A · u∗ = 0 mod q.

Applying the translation technique in [ACL+22] to the pairing-based assumption (Definition 9)
which underlies the security of the pairing-based CFC construction, we encounter an obstacle that
there is no translation for the term [η]2 in the challenge relation e(U, [η]2) = e(V, [1]2).
17 We use k-R-ISIS to refer to both the ring and module version. In [ACL+22], the module version is given the name

k-M -ISIS.

32

To overcome the above obstacle, in the following, we introduce (a special case of) a generalisation
of the k-R-ISIS assumption which we call the Twin-k-R-ISIS assumption. In a nutshell, instead
of a single set G of monomials, we now have two (or in general more) sets GA and GB of non-
overlapping monomials. The Twin-k-R-ISIS assumption states that even when given short preimages
ug satisfying A · ug = t · g(v) mod q for all g ∈ GA and short preimages wg satisfying B · ug =
t · g(v) mod q for all g ∈ GB, it is hard to find a short non-zero preimage (u∗,w∗) satisfying
A ·u∗+B ·w∗ = 0 mod q. We stress that the non-overlapping requirement of GA and GB is crucial,
for otherwise (ug,−wg) would be a trivial solution for any g ∈ GA∩GB. Other than this trivial attack
(which is ruled out), it could be verified that the (failed) attack strategies discussed in [ACL+22]
against the k-R-ISIS assumption also fail against the Twin-k-R-ISIS assumption.18

Definition 10 (Twin-k-R-ISIS Assumption). Let ℓ, η ∈ N, q be a rational prime, β, β∗ ∈ R+,

GA :=

{
Xi′

Xi
· X̄k,

Xi′

Xi
· X̌k,

X̄i′

X̄i
·Xk

}
i,i′,k∈[n],i ̸=i′

∪
{
Xi′ · X̌j′

Xi · X̌j

· X̄k

}
i,i′,j,j′,k∈[n]
i ̸=i′,j ̸=j′

,

GB :=
{
Xk, X̄k, X̌k

}
k∈[n], and G := GA ∪ GB. Let D be a distribution over Rℓ. Write pp :=

(Rq, η, ℓ, n, β, β
∗,GA,GB,D). The k-R-ISISpp assumption states that for any PPT adversary A we

have Advk-m-isis
pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr


A · u∗ +B ·w∗ ≡ 0 mod q

∧ 0 < ∥(u∗,w∗)∥ ≤ β∗

∣∣∣∣∣∣∣∣∣∣∣∣

A←$Rη×ℓ
q mod q; B←$Rη×ℓ

q mod q

t←$ (R×
q)

η; v, v̄, v̌ ←$ (R×)
n

ug ←$ D : A · ug ≡ t · g(v, v̄, v̌) mod q, ∀g ∈ GA
wg ←$ D : B ·wg ≡ t · g(v, v̄, v̌) mod q, ∀g ∈ GB
(u∗,v∗)← A (A,B, t,v, v̄, v̌, {uGA

,wGB
})

.

We discuss briefly the relations between the Twin-k-R-ISIS assumption, the original k-R-ISIS
assumption [ACL+22], and the recently introduced BASIS assumption [WW23]. Below, we adopt
the notation A−1(v) which refers to a short preimage u satisfying A · u = v mod q sampled from
some distribution.

The BASIS assumption [WW23] is a strong assumption which states the the SIS problem with
respect to C even if a trapdoor for a matrix C related to D is given. Wee and Wu [WW23] discussed
the relation between BASIS and k-R-ISIS and showed evidence that the former implies the latter
(with appropriate parameters) but did not show a reduction. Below, we sketch a reduction from (a
ring version of) BASIS to Twin-k-R-ISIS. Since the Twin-k-R-ISIS assumption clearly implies the
original k-R-ISIS assumption for appropriate parameters, we also obtain a reduction from BASIS to
k-R-ISIS.

18 We refer to the attack strategies discussed in [ACL+22, Section 4.1]. There, the authors discussed two (they gave
three, but the third generalises the second) attacks: 1) Direct SIS attack: Finding a short vector in the kernel of
(A| − t · g∗(v)). 2) Find a (not necessarily short) linear combination (z1, . . . , zk) so that s∗ · g∗(v) =

∑
i zi · gi(v)

and ug∗ =
∑

i zi · ugi is short. There seems to be no obvious way that either attack can take advantage of the
two-slotted structure in the twin-kMISIS assumption.

33

We consider the following instantiation of the BASIS problem: For a matrix C and a vector v,
define the related matrix19

D :=


−G

−G

diag
(
(g(v)−1 ·A)g∈GA

)
diag

(
(g(v)−1 ·B)g∈GB

)


where diag(·) denotes block-diagonalisation, A = C ·RA and B = C ·RB for some short RA and
RB, and G is the gadget matrix. The BASIS problem is: Given (C,D) and a trapdoor of D, find
C−1(0).

To generate a Twin-k-R-ISIS instance, use the trapdoor of D to sample D−1(0) = (. . . ,uA,g, . . . ,uB,g, . . . , t̃).
Let t := G · t̃ mod q. By construction, we have A ·uA,g = t ·g(v) mod q and B ·uB,g = t ·g(v) mod q.
We can therefore run the Twin-k-R-ISIS solver to obtain short (u∗,w∗) such that

A · u∗ +B ·w∗ = 0 mod q

C · (RA · u∗ +RB ·w∗) = 0 mod q

It is not difficult to argue that the simulated Twin-k-R-ISIS instance is well-distributed, and the
extracted BASIS solution RA · u∗ +RB ·w∗ is non-zero with non-negligible probability.

7.3 Construction

In the following, we construct a lattice-based chainable functional commitment scheme. Our con-
struction is parametrised by a ring R, dimensions η, ℓ, modulus q, norm bound β, an input length
n, and the number of inputs m. Before describing the construction, we first introduce the following
shorthands and notation.

For a quadratic polynomial map f : Rmn → Rn, we express f(x1, . . . ,xm) similarly to previous
sections,

f(x1, . . . ,xm) = e+
∑

h∈S1(f)

Fh · xh +
∑

(h,h′)∈S⊗
2 (f)

Gh,h′ · (xh ⊗ xh′)

for some Gh,h′ ∈ Rn×n2 , Fh ∈ Rn×n, and e ∈ Rn.
Different from the pairing-based construction, our lattice-based construction is additionally

parametrised by a norm bound α ∈ R+. We assume that messages x and each coefficient of any
quadratic polynomial map f to be opened have norm at most α, and f is such that for any x1, . . . ,xm

of norm at most α, it holds that ∥f(x1, . . . ,xm)∥ ≤ α.
For a vector v ∈ (R×

q)
n, denote its component-wise inverse by v† := (v−1

i)ni=1. Define Zv :=

v† · vT − I = (zi,j)i,j where

zi,j =

{
0 i = j

v−1
i · vj i ̸= j

.

We are now ready to describe the construction as follows.
19 The matrix D consists of a block-diagonal part on the left and a block-column on the right. The block-diagonal

part can be split into two. On the top left, each block is given by g(v)−1 ·A for some g ∈ GA. On the bottom right,
each block is given by g(v)−1 ·B for some g ∈ GB . The block-column consists of −G blocks.

34

Setup(1λ, 1n)

– Sample trapdoored matrices (A, tdA), (B, tdB)← TrapGen(R, 1η, 1ℓ, q, β).
– Sample submodule generator t←$ (R×

q)
η.

– Sample commitment key vectors v, v̄, v̌ ←$Rn
q .

– Sample a short preimage ug ← SampPre(tdA, t · g(v, v̄, v̌) mod q) for each g ∈ GA, where

GA :=

{
Xi′

Xi
· X̄k,

Xi′

Xi
· X̌k,

X̄i′

X̄i
·Xk

}
i,i′,k∈[n],i ̸=i′

∪
{
Xi′ · X̌j′

Xi · X̌j

· X̄k

}
i,i′,j,j′,k∈[n]
i ̸=i′,j ̸=j′

– Sample a short preimage wg ← SampPre(tdB, t · g(v, v̄, v̌) mod q) for each g ∈ GB, where

GB :=
{
Xk, X̄k, X̌k

}
k∈[n].

– Output ck := (A,B, t,v, v̄, v̌, (ug)g∈GA
, (wg)g∈GB

) .

Com(ck,x)

– Compute c := ⟨v,x⟩ mod q.
– Output com = c and aux = x.
Open(ck, (auxh)h∈[m], f)

– Parse auxh as xh for all h ∈ [m] and let y := f(x1, . . . ,xm).
– Compute v1 := vec(Zv)⊗ v̄ and v2 := vec((I+ Zv)⊗ (I+ Zv̌)− I)⊗ v̄.
– Pack the preimages vectors given in the public parameters as columns of the following matrices:
• Ui such that A ·Ui = t · vTi mod q for i ∈ [2].

For example, for i = 1, the first few columns of the R.H.S. of the equation are of the form

t · vT1 = t ·
(
0 v1

v2
· v̄1 v1

v3
· v̄1 . . .

)
.

Notice that each column is either 0 ∈ Rη
q , for which 0 ∈ Rℓ is a trivial preimage, or of the

form t · vi′vi · v̄k for some i, i′, k ∈ [n] with i ̸= i′, for which a preimage is given in ck.
• Ū such that A · Ū = t · vT · Zv̄ mod q.
• Ǔ such that A · Ǔ = t · v̌T · Zv mod q.
• W such that B ·W = t · vT mod q.
• W̄ such that B · W̄ = t · v̄T mod q.
• W̌ such that B · W̌ = t · v̌T mod q.

– Compute u :=
∑

h∈S1(f)
U1 · vec(xT

h ⊗ Fh) +
∑

(h,h′)∈S⊗
2 (f)U2 · vec((xT

h ⊗ xT
h′)⊗Gh,h′).

– Compute w0 := W · y.
– Compute ū0 := Ū · y and w̄0 := W̄ · y.
– Compute ǔh := Ǔ · xh and w̌h := W̌ · xh for h ∈ S2(f).
– Output (u,w0, ū0, w̄0, (ǔh, w̌h)h∈S2(f)).
Ver(ck, (comh)h∈[m], com0, f, π)

– Define f̂(C1, . . . , Cm, Č1, . . . , Čm)

:= v̄T ·

 ∑
(h,h′)∈S2(f)

Gh,h′ · (v† ⊗ v̌†) · Ch · Čh′ +
∑

h∈S1(f)

Fh · v† · Ch + eT

 .

35

– Check if ∥w0∥ ≤ β∗ and ∥w̄0∥ ≤ β∗.
– For h ∈ [m] \ S2(f), set čh = 0 and check if ∥w̌h∥ ≤ β∗.
– Check if B ·w0 = t · c0 mod q.
– Check if there exists (unique) c̄0 such that B · w̄0 = t · c̄0 mod q.
– Check if there exists (unique) čh such that B · w̌h = t · čh mod q for h ∈ S2(f).
– Check if A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q and ∥u∥ ≤ β∗.
– Check if A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q and ∥ū0∥ ≤ β∗.
– Check if A · ǔh = t · (v̌T · v† · ch − čh) mod q and ∥ǔh∥ ≤ β∗ for h ∈ S2(f).
– Accept, i.e. output 1, if all checks pass. Otherwise, output 0.

Theorem 4. Let ℓ ≥ lhl(R, η, q, β), β∗ ≥ 2 · n4 · m̂2 · α3 · β · γ3R, and D = SampD(R, 1η, 1ℓ, q, β),
and assume that the twin-k-R-ISISRq ,η,ℓ,n,β,β∗,GA,GB ,D assumption holds. Then, the construction CFC
described above is an evaluation binding CFC for the class Fquad of quadratic functions over any
m ≤ m̂ vectors of length ≤ n, has efficient verification, and is (almost) additively homomorphic. For
a function f ∈ Fquad, the proof size of CFC is |π| = |S2(f)| · log2(m · n) · poly(λ), and for the class
Flevel = {Flevel,κ}, our CFC is s(n,m, κ)-succinct where s(n,m, κ) = κ · log2(m · n). Furthermore,
by setting m̂ = λω(1) the CFC supports quadratic functions over any m = poly(λ) vectors and is
κ · log2(n)-succinct.

In the following sections we prove the theorem.

7.4 Correctness

To prove correctness, we first state a claim which abstracts away most of the tedious calculations.
The claim is proven in Appendix D.

Claim. Let f(x1, . . . ,xm) = y. For h ∈ S(f), let ch = ⟨v,xh⟩ mod q. For h ∈ S2(f), let čh =
⟨v̌,xh⟩ mod q. For h ∈ [m] \ S2(f), let čh = 0. Let c0 = ⟨v,y⟩ mod q and c̄0 = ⟨v̄,y⟩ mod q. Let
v2 = vec((I+ Zv)⊗ (I+ Zv̌)− I)⊗ v̄ and v1 = vec(Zv)⊗ v̄. It holds that

f̂(c1, . . . , cm, č1, . . . , čm)− c̄0 =
∑

(h,h′)∈S⊗
2 (f)

vT2 · vec(xT
h ⊗ xT

h′ ⊗Gh,h′) +
∑

h∈S1(f)

vT1 · vec(xT
h ⊗ Fh),

vT · v̄† · c̄0 − c0 = vT · Zv̄ · y, and

v̌T · v† · ch − čh = v̌T · Zv · y for all h ∈ S2(f).

Recall that

u =
∑

(h,h′)∈S⊗
2 (f)

U2 · vec(xT
h ⊗ xT

h′ ⊗Gh,h′) +
∑

h∈S1(f)

U1 · vec(xT
h ⊗ Fh),

ū0 = Ū · y, and

ǔh = Ǔ · xh for h ∈ S2(f)

are computed using (U2,U1, Ū, Ǔ) satisfying

A ·Uh = t · vTh mod q,

A · Ū = t · v̄T · Zv mod q, and

A · Ǔ = t · v̄T · Zv mod q.

36

It follows that

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q,

A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q, and

A · ǔh = t · (v̌T · v† · ch − čh) mod q for all h ∈ S2(f).

It remains to analyse the norms of the preimages. The norms of w0, w̄0, (w̌h)h∈S2(f) are easy to
verify. By the properties discussed in Section 7.1, each column in the matrices U2, U1, Ū, and Ǔ
has norm as most β. By our choice of parameters, each entry in Gh,h′ , Fh, x1, . . . ,xm and y has
norm at most α. It follows that

∥u∥ ≤ n4 · S⊗2 (f) · α3 · β · γ3R + n3 · S1(f) · α2 · β · γ2R < β∗,

∥ū∥0 ≤ n · α · β · γR < β∗, and
∥ǔ∥h ≤ n · α · β · γR < β∗ ∀ h ∈ S2(f).

Additive homomorphism. As is common in the lattice setting, our construction is almost addi-
tively homomorphic in the following sense: Although the commitment function x 7→ ⟨v,x⟩ mod q
is a linear function, the bounded-norm restriction on messages could be violated since ∥x∥ ≤ α
and ∥x′∥ ≤ α in general do not imply ∥x+ x′∥ ≤ α. As such, correctness is only guaranteed after
homomorphic evaluation if ∥x+ x′∥ ≤ α.

7.5 Succinctness

We measure the succinctness of our construction. A commitment consists of a single Rq element.
An opening proof consists of 2S2(f) + 3 vectors in Rℓ each of norm at most β∗. Setting ℓ =
lhl(R, η, q, β) = log q · poly(λ) for the guarantees of lattice trapdoor algorithms, β∗ = 2 ·n4 ·m2 ·α3 ·
β ·γ3R = n4 ·m2 ·poly(λ) so that correctness holds, and q = β∗ ·poly(λ) to be large enough so that the
Twin-k-R-ISIS assumption plausibly holds, a commitment can be described with log q · poly(λ) =
(log n+ logm) · poly(λ) bits, while an opening proof for a function f ∈ Fquad can be described with
(2 |S2(f)|+ 3) · ℓ · log β∗ · poly(λ) = |S2(f)| · log2(m · n) · poly(λ) bits. Note that for f ∈ Flevel, then
|S2(f)| = |S⊗2 (f)| = κ. Hence, our CFC is s(n,m, κ)-succinct for the class Flevel = {Flevel,κ}, where
s(n,m, κ) = κ · log2(m · n).

Remark 1 (Removing the dependence on m). According to the choice of parameters above, com-
mitments and openings have a logarithmic dependence on the number of inputs m (in addition to
the input length n). More importantly, for correctness to hold, one should fix q depending on the
largest m to be supported. This is a limitation, especially when plugging this CFC in the FC trans-
formation as there m is in the worst case the depth of the circuit. However, since the dependence is
only logarithmic we can actually set β∗ = 2 ·n4 · m̂2 ·α3 ·β · γ3R where m̂ = λω(1) is superpolynomial
in the security parameter, in such a way that correctness holds for any m = poly(λ). This change
makes q = λω(1) (a choice that does not affect the plausibility of the assumption according to the
analysis of [ACL+22]) and makes the CFC scheme κ · log2(n)-succinct.

7.6 Resulting Instantiations of FC for Circuits

As in the previous section, we summarize the concrete FC schemes that result from instantiating
our generic construction of Section 5 with our lattice-based CFC.

37

Corollary 2. Assume that all the conditions of Theorem 4 are satisfied. Then the following state-
ments hold:

1. There exists an FC scheme for the class Fn = {F(d,t,w)} of arithmetic circuits of width w bounded
by ≤ n and in-degree bounded by ≤ tmax that is O(d · log2(tmax · n))-succinct.

2. Using the choice of parameters of Remark 1, there exists an FC scheme for Fn = {F(d,t,w)} of
width w ≤ n that is O(d)-succinct.

3. For any w0 ≥ 2, there exists an FC scheme for the class F = {F(d,t,w)} of circuits of arbitrary
width w > w0 that is O

(
d · (w/w0)

2
)
-succinct.

Case (1) follows by observing that in the FC construction from CFCs the number of CFC inputs
is bounded by the in-degree of the admissible circuits. In case (1) we fix a concrete m = tmax in
the choice of q = β∗ · poly(λ) while in points (2)–(3) we consider the parameters choice of Remark
1 that let us support any in-degree t = poly(λ).

As opposed to our pairing-based construction, the linear dependency on the depth does not follow
from a black-box application of our FC from CFC construction. In fact, Theorem 2 gives a proof
size of O

(
d · t · log2(tmax · n)

)
. We can supress the t factor by noticing that, for each circuit layer

h, the same vectors (ǔh, w̌h) are included in the openings at every layer h′ such that h ∈ S2(f (h′)).
The result follows by including them only once in the FC opening proof.

We observe that the resulting lattice-based FC schemes yield shorter proofs (with respect to cir-
cuit depth) than their pairing-based counterparts. This feature can be seen as a natural consequence
of the additional capability to perform computations over encrypted (in this case, committed) data
that lattices provide. Indeed, in our pairing-based construction, the prover needs to provide O(d · t)
commitments Xh,h′ to the tensor product of every pair of layers in the circuit. This is avoided in
our lattice-based scheme, as the verifier can multiply commitments Ch · Čh′ by herself.

7.7 Proof of Security

Suppose there exists a PPT adversary A against evaluation binding of the CFC construction, we
construct a PPT algorithm B for the Twin-k-R-ISIS problem as follows. Given a Twin-k-R-ISIS
instance ck, B passes ck to A. The adversary A returns input commitments (ch)h∈[m], a quadratic
function f , two output commitments c0 and c′0, and two opening proofs π and π′, where π =
(u,w0, ū0, w̄0, (ǔh, w̌h)h∈S(f)) and π′ = (u′,w′

0, ū
′
0, w̄

′
0, (ǔ

′
h, w̌

′
h)h∈S2(f)). By our assumption on A,

with non-negligible probability, π (and analogously π′) satisfies

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q,

A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q, and

A · ǔh = t · (v̌T · v† · ch − čh) mod q for all h ∈ S2(f),

where B · w̄0 = t · c̄0 mod q and B · w̌h = t · čh mod q.
For any h ∈ S2(f), suppose w̌h ̸= w̌′

h, then from the third equation (ǔh − ǔ′
h, w̌h − w̌′

h) would
be a non-zero vector of norm at most 2β∗ satisfying A · (ǔh − ǔ′

h) + B · (w̌h − w̌′
h) = 0 mod q,

contradicting the twin-k-R-ISIS assumption. We therefore have w̌h = w̌′
h and hence čh = č′h for all

h ∈ S2(f).
Next, suppose w̄0 ̸= w̄′

0, then from the first equation (u − u′, w̄0 − w̄′
0) would be a non-zero

vector of norm at most 2β∗ satisfying A · (u − u′) + B · (w̄0 − w̄′
0) = 0 mod q, contradicting the

twin-k-R-ISIS assumption. We therefore have w̄0 = w̄′
0 and hence c̄0 = c̄′0.

38

Finally, suppose w0 ̸= w′
0, then from the second equation (ū0−ū′

0,w0−w′
0) would be a non-zero

vector of norm at most 2β∗ satisfying A · (ū0 − ū′
0) +B · (w0 −w′

0) = 0 mod q, contradicting the
twin-k-R-ISIS assumption. We therefore have w0 = w′

0 and hence c0 = c′0, meaning that A cannot
be a successful adversary against evaluation binding.

7.8 Efficient Verification

Our CFC construction also supports amortized efficient verification. We observe that in our con-
struction the Vf algorithm can be split into an offline preprocessing step and an online verification
step:

– VerPrep(ck, f): Compute the polynomials f̂ , īd, and ǐd, and output vkf := (A,B, t, f̂ , īd, ǐd).
– EffVer(vkf , (comh)h∈[m], com0, π): Perform all the checks described in Vf.

Clearly, the runtime of EffVer is (S⊗2 (f) + S1(f)) · log q · poly ≤ m2 · log(m · n) · poly(λ), which is
logarithmic in n.

7.9 Commitment Hiding

Commitment hiding can be achieved by extending the dimension of the input vector and dedicating
some entries for commitment randomness. We outline such a transformation in the following.

First, we modify the setup so that the vectors v, v̄, v̌ are now sampled from Rn+ℓ
q . The sets GA

and GB of monomials are adjusted accordingly. To commit to x ∈ Rn, sample a uniformly random

vector r ←$Rℓ with ∥r∥ ≤ α, and compute c :=
〈
v,

(
x
r

)〉
mod q. Opening and verifying are almost

identical as in the base scheme, except that f is treated as a polynomial on (x1, r1, . . . ,xm, rm)
but with zero coefficients for all terms involving any entry of (r1, . . . , rm). It can be verified that
the modified scheme retains correctness and evaluation binding. For ℓ ≥ lhl(R, η, q, β), which we
anyway need for correctness, commitment hiding is immediate from the leftover hash lemma.

To make the verification more friendly to zero-knowledge arguments, we need to make one
more minor change to the scheme: The opening algorithm additionally includes the commitments
(c̄0, (čh)h∈S2(f)) in an opening proof. This makes the verification NIZK-friendly, since it boils down to
proving the following SIS relations in zero-knowledge: There exists (u,w0, ū0, w̄0, (ǔh, w̌h)h∈S2(f)) ∈
(Rℓ)2S2(f)+3 such that

A · u = t · (f̂(c1, . . . , cm, č1, . . . , čm)− c̄0) mod q ∧ ∥u∥ ≤ β∗

A · ū0 = t · (vT · v̄† · c̄0 − c0) mod q ∧ ∥ū0∥ ≤ β∗

A · ǔh = t · (v̌T · v† · ch − čh) mod q ∧ ∥ǔh∥ ≤ β∗ ∀ h ∈ S2(f)
B ·w0 = t · c0 mod q ∧ ∥w0∥ ≤ β∗

B · w̄0 = t · c̄0 mod q ∧ ∥w̄0∥ ≤ β∗

B · w̌h = t · čh mod q ∧ ∥w̌h∥ ≤ β∗ ∀ h ∈ S2(f).

By slightly adjusting the parameters of the k-R-ISIS assumption, the scheme remains evaluation
binding even if the NIZK argument can only guarantee that the norm of the witness is bounded
by some β∗∗ > β∗ (although the prover has a witness of norm bounded by β∗). This allows to use
efficient NIZK (e.g. [Lyu09]) for proving SIS relations with relaxed soundness.

39

8 Conclusions

In this work, we present the first constructions of functional commitments for circuits based on
falsifiable assumptions. Our results leave some open questions for future work. The first one concerns
the current need of fixing a bound on the maximal width of the circuits at setup time. Constructing
an FC whose setup procedure only depends on the input size, or ideally on no bound, would be a
remarkable result that would also imply fully-homomorphic signatures. Another interesting direction
is to construct functional commitments with more succinct opening proofs, e.g., sublinear in the
circuit depth. Finally, we believe that there is room for improvement towards the design of FC
schemes that rely on simpler, or more standard, cryptographic assumptions.

Acknowledgements

This work is supported by the PICOCRYPT project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 101001283), partially supported by PRODIGY Project (TED2021-
132464B-I00) funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGen-
erationEU / PRTR, and partially funded by Ministerio de Universidades (FPU21/00600). This
research has been supported in part by the Programma ricerca di ateneo UNICT 35 2020-22 linea
2 and by research gifts from Protocol Labs.

References

ACL+22. M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. K. Thyagarajan. Lattice-Based SNARKs:
Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract). In CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 102–132. Springer, Heidelberg, August 2022.

AL21. M. R. Albrecht and R. W. F. Lai. Subtractive Sets over Cyclotomic Rings - Limits of Schnorr-Like
Arguments over Lattices. In CRYPTO 2021, Part II, volume 12826 of LNCS, pages 519–548, Virtual
Event, August 2021. Springer, Heidelberg.

BF11. D. Boneh and D. M. Freeman. Homomorphic Signatures for Polynomial Functions. In EUROCRYPT 2011,
volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May 2011.

CF13. D. Catalano and D. Fiore. Vector Commitments and Their Applications. In PKC 2013, volume 7778 of
LNCS, pages 55–72. Springer, Heidelberg, February / March 2013.

CFM08. D. Catalano, D. Fiore, and M. Messina. Zero-Knowledge Sets with Short Proofs. In EUROCRYPT 2008,
volume 4965 of LNCS, pages 433–450. Springer, Heidelberg, April 2008.

CFT22. D. Catalano, D. Fiore, and I. Tucker. Additive-Homomorphic Functional Commitments and Applications
to Homomorphic Signatures. In ASIACRYPT 2022, 2022. To appear.

CFW14. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic Signatures with Efficient Verification for Polyno-
mial Functions. In CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–389. Springer, Heidelberg,
August 2014.

dCP23. L. de Castro and C. Peikert. Functional Commitments for All Functions, with Transparent Setup. In
EUROCRYPT 2023, 2023. To appear.

EHK+13. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An Algebraic Framework for Diffie-Hellman
Assumptions. In CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg,
August 2013.

GKR08. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for muggles.
In 40th ACM STOC, pages 113–122. ACM Press, May 2008.

GM18. N. Genise and D. Micciancio. Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus.
In EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 174–203. Springer, Heidelberg, April / May
2018.

40

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In 40th ACM STOC, pages 197–206. ACM Press, May 2008.

GR19. A. González and C. Ràfols. Shorter Pairing-Based Arguments Under Standard Assumptions. In ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 728–757. Springer, Heidelberg, December 2019.

GS08. J. Groth and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In EURO-
CRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013, Part I, volume 8042 of LNCS, pages
75–92. Springer, Heidelberg, August 2013.

GVW15. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled Fully Homomorphic Signatures from Standard
Lattices. In 47th ACM STOC, pages 469–477. ACM Press, June 2015.

GW11. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

GZ21. A. González and A. Zacharakis. Fully-Succinct Publicly Verifiable Delegation from Constant-Size As-
sumptions. In TCC 2021, Part I, volume 13042 of LNCS, pages 529–557. Springer, Heidelberg, November
2021.

JMSW02. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic Signature Schemes. In CT-RSA 2002,
volume 2271 of LNCS, pages 244–262. Springer, Heidelberg, February 2002.

KNYY19. S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated Verifier/Prover and Preprocessing
NIZKs from Diffie-Hellman Assumptions. In EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
622–651. Springer, Heidelberg, May 2019.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and Their
Applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, December
2010.

LM19. R. W. F. Lai and G. Malavolta. Subvector Commitments with Application to Succinct Arguments. In
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019.

LP20. H. Lipmaa and K. Pavlyk. Succinct Functional Commitment for a Large Class of Arithmetic Circuits.
In ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 686–716. Springer, Heidelberg, December
2020.

LRY16. B. Libert, S. C. Ramanna, and M. Yung. Functional Commitment Schemes: From Polynomial Commit-
ments to Pairing-Based Accumulators from Simple Assumptions. In ICALP 2016, volume 55 of LIPIcs,
pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LY10. B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets
with Short Proofs. In TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidelberg, February
2010.

Lyu09. V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In
ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

MP12. D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

MRV16. P. Morillo, C. Ràfols, and J. L. Villar. The Kernel Matrix Diffie-Hellman Assumption. In ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–758. Springer, Heidelberg, December 2016.

PPS21. C. Peikert, Z. Pepin, and C. Sharp. Vector and Functional Commitments from Lattices. In TCC 2021,
Part III, volume 13044 of LNCS, pages 480–511. Springer, Heidelberg, November 2021.

WW23. H. Wee and D. J. Wu. Succinct Vector, Polynomial, and Functional Commitments from Lattices. In
EUROCRYPT 2023, 2023. To appear.

A More on FCs and CFCs security notions

A.1 Proof of Theorem 1 (zero-knowledge FC)

Let Π = (Setup,Prove,Ver, Sim) be a NIZK for the relation RFC = {((ck, C, f,y);π) : Ver(ck, com, f,
y, π) = 1}. Then, we can construct a FC scheme FC∗ that satisfies com-hiding and zero knowledge
openings as follows:

– FC∗.Setup(1λ) runs ck← FC.Setup(1λ) and crs← Π.Setup(1λ), and outputs (ck, crs).

41

– FC∗.Com((ck, crs),x; r) directly outputs (com, aux)← FC.Com(ck,x; r) (note that FC.Com is com-
hiding).

– FC∗.Open((ck, crs), aux, f) runs π ← FC.Open(ck, aux, f) and then outputs π∗ ← Π.Prove(crs, (ck, com, f,y), π).
– FC∗.Ver((ck, crs), com, f,y, π∗) outputs b← Π.Ver(crs, (ck, com, f,y), π∗).

Additive homomorphism and efficient verification of FC∗ follow from the respective properties
of FC.

Zero knowledge follows from the zero knowledge property of the NIZK, since we can construct
a simulator FC∗.Sim given the NIZK simulator Π.Sim as follows. FC∗.SimCom,FC

∗.SimEquiv are the
same as their respective FC com-hiding simulators. FC∗.SimSetup runs both FC.SimSetup and the NIZK
simulator Π.SimProve and outputs simulated c̃rs, c̃k and respective trapdoors. Finally, FC∗.SimOpen

runs the NIZK simulator Π.SimProve on the simulated c̃rs and its trapdoor.
Evaluation binding for FC∗ requires the knowledge soundness of the NIZK. Namely, given two

proofs π∗, π∗′ for different outputs y,y′ and the same commitment com, one can run the NIZK
extractor to obtain π, π′ from π∗, π∗′. Then, it is possible to make a reduction to the security
(evaluation binding) of FC.

A.2 Strong Evaluation Binding and Extractability

Definition 11 (Strong Evaluation Binding). For any PPT adversary A, the following advan-
tage is negl(λ):

AdvsEvBind
A,FC (λ) = Pr

 ∀i ∈ [Q],

Ver(ck, com, fi,yi, πi) = 1

∧ ̸ ∃x ∈ X : fi(x) = yi

:
ck← Setup(1λ, 1n)

(com, {fi,yi, πi}
Q
i=1)← A(ck)


Definition 12 (FC Extractability). FC is knowledge extractable for an auxiliary input distribu-
tion Z if for any polynomial time adversary A there exists a PPT extractor E such that the following
advantage is negl(λ):

Advextr
A,FC(λ) = Pr


Ver(ck, com, f,y, π) = 1

∧ (com ̸= com′

∨ f(x) ̸= y)

:

ck← Setup(1λ, 1n)

auxZ ← Z(1λ)
(com, f,y, π)← (A)(ck, auxZ)

(x; r)← E(ck, auxZ)
(com′, aux′)← Com(ck,x; r)


Proposition 4. Let FC be a knowledge extractable FC. Then, FC satisfies strong evaluation binding.

Proof. Let A be an adversary against strong evaluation binding that on input (ck, auxZ) returns
(com, {fi,yi, πi}

Q
i=1) such that ∀i ∈ [Q],Ver(ck, com, fi,yi, πi) = 1 ∧ ̸ ∃x ∈ X : fi(x) = yi. We will

show that if A is a succesful adversary then FC is not knowledge extractable.
We proceed by contradiction; assume that FC is knowledge extractable. We define Q adversaries

B1(ck, auxZ), . . . ,BQ(ck, auxZ) against FC extractability as follows: Bi runs A(ck, auxZ) and returns
the i-th tuple (com, fi,yi, πi) fromA’s output. Notice thatA is a deterministic machine; nevertheless
A can take input randomness in auxZ . As FC is knowledge extractable, for every Bi there exists an

42

extractor Ei(ck, auxZ) that returns xi; ri such that (abusing notation) com ← Com(ck,xi; ri) and
fi(xi) = yi.

We now distinguish two cases. First, suppose that xi ̸= xj for some i, j ∈ [Q]. Then, we have
that com = Com(ck,xi; ri) = Com(ck,xj ; rj), which is a contradiction as this breaks commitment
binding. Otherwise, let x be the vector such that x = xi for all i ∈ [Q]. Then, by correctness of the
extractors Ei we have that fi(x) = yi for every i ∈ [Q], which is a contradiction with respect to A
breaking evaluation binding.

Definition 13 (CFC Extractability). CFC is knowledge extractable for an auxiliary input distri-
bution Z if for any polynomial time adversary A there exists an extractor E such that the following
probability is negl(λ):

Pr



Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ (∃i ∈ [m] : comi ̸= com′
i

∨ comy ̸= com′
y

∨ f(x1, . . . ,xm) ̸= y)

:

ck← Setup(1λ, 1n)

auxZ ← Z(1λ)
((comi)i∈[m], f, comy, π)← A(ck, auxZ)

((xi; ri)i∈[m], (y; ry))← E(ck, auxZ)
(com′

i, aux
′
i)← Com(ck,xi; ri)

(com′
y, aux

′
y)← Com(ck,y; ry)


A.3 Extractability of FC from CFC

Theorem 5. If CFC is a knowledge extractable CFC, then our FC in Figure 1 is knowledge ex-
tractable.

Proof. Let A be an adversary against FC extractability (Definition 12) with respect to an auxiliary
input distribution Z. On input ck,A returns (com, f,y, π)← A(ck) such that FC.Ver(ck, com, f,y, π) =
1. Our goal is to construct an extractor EA for FC and argue that it is successful with overwhelm-
ing probability. The intuition of the proof is that we can use A to create an adversary B against
CFC extractability (Definition 13) with respect to the same input distribution Z. Then, we use the
extractor EB for CFC to build EA. We describe B and EA in Figure 2.

Let (com, com1, π1, f
(1)) be the output of B. It follows that B is a valid adversary against CFC

extractability and that Ver(ck, com, f (1), com1, π1) = 1. As CFC is knowledge extractable, there
exists an extractor EB that returns x,x(1) such that

Pr[com = Com(ck,x) ∧ com1 = Com(ck,x(1)) ∧ f (1)(x) = x(1)] = 1− negl(λ).

Next, we show that the extractor EA for FC succeeds with overwhelming probability, i.e., that

Pr[com ̸= Com(ck,x) ∨ f(x) ̸= y] = negl(λ).

For the first clause, we have that Pr[com ̸= Com(ck,x)] = negl(λ) as otherwise the extractor EB is
not successful (and B wins with non-negligible probability). For the second clause, we can recompute
y′ := f(x). If f(x) ̸= y, then we can break evaluation binding of FC by creating an honest proof
π′ ← FC.Open(ck,x, f) and outputting (com, f, π,y, π′,y′). Hence, Pr[f(x) ̸= y] = negl(λ) and the
result follows by the union bound.

43

B(ck, auxZ)
1 : (com, f,y, π)← A(ck, auxZ)

2 : (f (1), . . . , f (d))← Parse(f)

3 : (π1, . . . , πd, com1, . . . , comd−1)← Parse(π)

4 : return (com, com1, π1, f
(1))

EA(ck, auxZ)
1 : (x,x(1))← EB(ck, auxZ)
2 : return x

Fig. 2: Adversary B and extractor EA for the proof of Theorem 5.

B Analysis of the HiKer Assumption in the Generic Bilinear Group Model

Lemma 2. The n-HiKer assumption holds in the generic bilinear group model.

Proof. First of all, note that the assumption is equivalent to an assumption without rational terms.
Indeed, for a uniformly sampled η′, consider the assumption above where η = η′

∏
i,j∈[n] σiτj .

The intuition is that since the solution (U, V) satisfies the equation e(U, [η]2) = e(V, [1]2) then it
must be of the form (U, V) = [u, ηu]1 for some u. However, if we look at the input of the adversary
in G1, there is no pair of elements in the linear span of [1, η]1. Note also that elements in G2 cannot
be used by a GGM extractor as bgp is a Type-III bilinear group setting. A detailed proof follows.

More formally, let A be an adversary that on input (bgp, Ω) outputs two elements
U, V ∈ G1 such that e(U, [η]2) = e(V, [1]2). Then, the GGM extractor must out-
put two polynomials pu(S,T , H), pv(S,T , H) with coefficients u0, uσ,i, uτ,i, ui,j , ui,i′ , ui,j,i′,j′ and
v0, vσ,i, vτ,i, vi,j , vi,i′ , vi,j,i′,j′ such that:

0 = pu(S,T , H)H + pv(S,T , H) =

u0H + v0 +
∑
i

[(uσ,iSi + uτ,iTi)H + vσ,iSi + vτ,iTi] +
∑
i,j

[ui,jSiTjH + vi,jSiTj]

+
∑

i,i′∈[n]
i ̸=i′

[
ui,i′

Si′

Si
TiH

2 + vi,i′
Si′

Si
TiH

]
+

∑
i,j,i′,j′∈[n]
(i,j) ̸=(i′,j′)

[
ui,j,i′,j′

Si′Tj′

SiTj
H2 + vi,j,i′,j′

Si′Tj′

SiTj
H

]
.

Due to the equivalence mentioned above, we can effectively do a change of variable H 7→ HA where
A =

∏
i,j∈[n] SiTj and reorganize the expression as a polynomial c0 + c1H + c2H

2 in H, where

c0 =

v0 + ∑
i∈[n]

(vσ,iSi + vτ,iTi) +
∑

i,j∈[n]

vi,jSiSj

 ,

c1 =

u0 + ∑
i∈[n]

(uσ,iSi + uτ,iTi) +
∑

i,j∈[n]

ui,jSiTj +
∑

i,i′∈[n]
i ̸=i′

vi,i′
Si′

Si
Ti +

∑
i,j,i′,j′∈[n]
(i,j)̸=(i′,j′)

vi,j,i′,j′
Si′Tj′

SiTj

A,

c2 =

 ∑
i,j,i′,j′∈[n]
(i,j)̸=(i′,j′)

ui,j,i′,j′
Si′Tj′

SiTj
+
∑

i,i′∈[n]
i ̸=i′

ui,i′
Si′

Si
Ti

A2.

44

For the above to equal the zero polynomial in H, all terms must cancel. We analyze the constant,
linear, and quadratic terms separately. Note that as all fractions are multiplied by A =

∏
i,j∈[n] SiTj ,

all denominators vanish.

– The constant term does not include cross-terms, so all monomials are linearly independent and
the expression cancels only if v0 = vσ,i = vτ,i = vi,j = 0.

– The linear term is formed by pairwise distinct monomials which are all independent; no allowed
choice of indices i, j, i′, j′ or i, i′ produces a monomial in the linear span of any others. In par-
ticular, note that variables in (Si′/Si)Ti only cancel for i = i′ which is not in the sum. Also, the
denominator of (Si′Tj′)/(SiTj) only cancels if (i, j) = (i′, j′) which is also not in the sum.

– For the quadratic term, we reason analogously to conclude that all terms are independent.

It follows that all coefficients of pu(S,T , H) and pv(S,T , H) must be zero, so pu = pv = 0 and
the assumption holds.

C Knowledge Extractability of the Pairing-based CFC for Quadratic Functions

In this section, we prove that the pairing-based CFC for quadratic functions of Section 6 is knowl-
edge extractable (hence strong evaluation binding by Proposition 4) under an extractability (non-
falsifiable) assumption that we define below. This result implies that CFC can be seen as a SNARK
for quadratic polynomial maps. In particular, its use with a single input can be used to prove arith-
metic circuit satisfiability, and thus it is a (commit-and-prove) SNARK for NP with constant-size
proofs.

Extractability assumption. First of all, we introduce our extractability assumption which is
a slight extension of classical knowledge-of-exponent assumptions in bilinear groups. The intuition
is that if the adversary produces two group elements in G1 and G2 that share the same discrete
logarithm, then it must know coefficients that explain both elements as a linear combination of (a
subset of) its inputs that have the same representation in G1 and G2. Note that our assumption
can only hold in type-III bilinear groups, as for type-I and type-II groups there exists an efficient
map G2 → G1.

Definition 14 (Assumption 1). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group setting and
let Z be a PPT auxiliary input generator. The assumption holds for bgp and Z if, for every n =

poly(λ) and any polynomial-time A, given Ω(σ) :=

(
[σ]1 , [σ]2 ,

{[
σi′
σi

]
1

}
i,i′∈[n

,
{[

1
σi

]
2

}
i∈[n]

)
,

then there exists a polynomial-time extractor E such that

Pr

e(U, [1]2) = e([1]1, V)

∧ U ̸= [x0 + ⟨x,σ⟩]1

∣∣∣∣∣∣∣
auxZ ← Z(Ω)

(U, V)← A(bgp, Ω; auxZ)

(x0, {xi}ni=1)← E(bgp, Ω; auxZ)

 = negl(λ)

where the probability is taken over the choice of σ ←$ Fn and the random coins of Z.

We now describe the auxiliary generators Z for which we can argue (in the generic group model)
that Assumption 1 holds. We say that a PPT input generator Z is admissible if, on input Ω(σ),
outputs a set auxZ of group elements in G1 and G2 such that:

45

– There exists no pair of elements A ∈ G1, B ∈ G2 in the linear span of Ω ∪ auxZ , except for linear
combinations of [σi]1, [σi]2 and the group generators [1]1, [1]2, such that e(A, [1]2) = e([1]1, B).

– All elements provided in auxZ can be independently generated from the input of the assumption
Ω and from the random coins of Z.

Our CFC Auxiliary input generator. In order to show extractability of CFC, we define an
input generator ZCFC that, on input Ω, outputs a set auxZ which has an identical distribution
to a commitment key ck of the CFC. ZCFC proceeds as follows. First, it samples β,γ ←$ Fn and
ηα, ηβ, ηγ ←$ F. Then, it generates all parameters as follows, implicitly setting α := σ:

auxZ :=



[σ]1 , [σ]2 , β [1]1 , γ [1]1 , [σ]1 ⊗ β, ηα [1]2 , ηβ [1]2 , ηγ [1]2{
γi′
γi
ηα [σi]1 , βiηβ

[
σi′
σi

]
1

}
i,i′∈[n]
i ̸=i′

{
βj′
βj

γkηγ

[
σi′
σi

]
1

}
i,j,i′,j′,k∈[n]
(i,j) ̸=(i′,j′){

ηα
γi

[σi]2 , βiηβ

[
1
σi

]
2

}
i∈[n]

,
{
γkηγ

[
1
σi

]
2

}
i,k∈[n]

,
{

γkηγ
βj

[
1
σi

]
2

}
i,j,k∈[n]


Clearly, the distribution of auxZ , given a random generation of Ω, is identical to ck← CFC.Setup(1λ, 1n)

and the conditions specified above on Z hold.

Extending our HiKer assumption. Our extractability proof requires a second assumption which
is an extension of the Hinted Kernel assumption introduced in 9. We define it below.

Definition 15 (Assumption 2). Let bgp = (q,G1,G2,GT , e, g1, g2) be a bilinear group setting, let
n ∈ N and let G1,G2 be the following two sets of Laurent monomials in Zq[S1, T1, . . . , Sn, Tn, H]:

G1(S,T , H) := {Si, Ti}i∈[n] ∪ {Si · Tj}i,j∈[n] ∪
{
Si′

Si
· Ti ·H

}
i,i′∈[n]
i ̸=i′

∪
{
Si′ · Tj′

Si · Tj
·H
}

i,j,i′,j′∈[n]
(i,j)̸=(i′,j′)

G2(S,T , H) := {H} ∪ {Si}i∈[n] ∪
{

1

Si
· Ti ·H,

1

Si
·H
}

i∈[n]
∪
{

1

Si
· 1
Tj
·H
}

i,j∈[n]

The assumption holds if for every n = poly(λ) and any PPT A, the following advantage is negligible

Pr

 (U, V) ̸= (1, 1)G1 ∧

e(U, [η]2) · e(V, [1]2) =
∏
i

e

(
Wi,

[
ητi
σi

]
2

) ∣∣∣∣∣∣∣ (U, V, {Wi}i∈[n])← A

(
bgp,

[G1(σ, τ , η)]1,
[G2(σ, τ , η)]2

)
where the probability is over the random choices of σ, τ , η and A’s random coins.

The HiKer assumption is a special case of Assumption 2 in which every Wi = [0]1. The assump-
tion can be justified in the GGM in an analogous way as the HiKer assumption; note that there are
no terms of the form Ti/Si or H · Ti/Si in G1.

Extractability proof. We are now ready to state and prove the extractability of our pairing-
based CFC for quadratic functions. The broad idea of the proof is that, given a valid CFC proof
π for f , we can use the extractor of Assumption 1 to obtain coefficients x1, . . . ,xm and values
x0,1, . . . , x0,m such that the commitments to the inputs are of the form comi = [⟨xi,α⟩]1 + [x0,i]1

46

for every i ∈ [m]. Besides, using Assumption 2, we can assert that all x0,i = 0 with overwhelming
probability. This implies that the commitments comi are correctly distributed as comi = [⟨xi,α⟩]1
and that we can extract the committed inputs xi. Finally, we show that comy must be a commitment
to y = f(x1, . . . , xm) as otherwise we break evaluation binding.

Theorem 6. Assuming Assumption 1 for the input generator ZCFC described above, and Assump-
tion 2, the pairing-based CFC scheme of Section 6 is knowledge extractable.

Proof. Let A be a deterministic, polynomial-time adversary against CFC extractability. On in-
put (ck, auxZ) for some auxiliary input auxZ ← Z, A outputs (comi)i∈[m], f, comy, π) such that
Ver(ck, (comi)i∈[m], comy, f, π) = 1. Our goal is to show that we can construct an extractor EA that
on input (ck, auxZ) returns vectors x1, . . . ,xm,y such that the advantage of A in the extractability
game is

Pr


Ver(ck, (comi)i∈[m], comy, f, π) = 1

∧ (∃i ∈ [m] : comi ̸= Com(ck,xi)

∨ comy ̸= Com(ck,y)

∨ f(x1, . . . ,xm) ̸= y)

 = negl(λ).

B(j)0 (Ω, auxZ)

1 : ck← auxZ

2 : (comi)i∈[m], f, comy, π)← A(ck, auxZ)

3 : (Xi, X
(2)
i)i∈[m] ← Parse(π)

4 : return (Xj , X
(2)
j)

EA(ck, auxZ)
1 : for j ∈ [m] :

2 : (U, V)← B(j)
0 (Ω, auxZ)

3 : (xj , x0,j)← E(j)B (Ω, auxZ)

4 : y ← f(x1, . . . ,xm)

5 : return (x1, . . . ,xm,y)

Fig. 3: Adversaries B(j)0 and extractor EA for the proof of Theorem 6. Note that, for auxZ ← ZCFC(Ω),
we have that Ω ⊂ auxZ .

First of all, we show how to construct EA. We define m adversaries B(j)0 for j ∈ [m] against
Assumption 1 in Figure 3. B(j)0 takes Ω, auxZ as input, where auxZ is generated by ZCFC(Ω) as
explained before, and includes all the elements of a valid ck for the CFC scheme that are consistent
with Ω. We define EA in Figure 3.

In the rest of the proof, we show that the extractor succeeds except with negligible probability.
Consider the pair (A, EA) and their outputs, and let Win be the event in which (A, EA) win the
CFC extractability game. We will reduce (A, EA) to an adversary B against Assumption 2 to show
that Pr[Win] ≤ negl(λ). The adversary B will embed the input of the assumption into a simulated
commitment key ck (we detail this procedure below), then run (A||EA)(ck) and parse its output
((comi)i∈[m], f, comy, π) and (x1, . . . ,xm,y). Depending on such output, we distinguish between the
following (nested) events:

– Event BadExt as the event in which comj ̸= [⟨xj ,α⟩]1 + [x0,j]1 for some j ∈ [m] and x0,j .
– Event BadCom as the event in which BadExt does not occur and x0,j ̸= 0 for some j ∈ [m].

47

– Event BadY as the event in which comy ̸= Com(ck, f(x1, . . . , xm) and BadCom (and hence also
BadExt) does not occur.

First, we bound the adversary’s winning probability given a bad extraction, Pr[Win ∧ BadExt].

Event BadExt. The output of each B(j)0 , which corresponds to the vectors extracted by EA, is
(comj , X

(2)
j) in the proof π. Also, by the pairing checks in the CFC.Ver algorithm, these satisfy

e(comj , [1]2) = e([1]1, X
(2)
j). As ck is perfectly distributed, the output of EA satisfies that comi ̸=

[⟨xi,α⟩]1+[x0,i]1 for some x0,i, and for every i, unless any of the extractors E(j)B fails. By Assumption
1, this occurs with negligible probability, so by the union bound we have

Pr[Win ∧ BadExt] ≤
m∑
i=1

Pr[comi ̸= [⟨xi,α⟩]1 + [x0,i]1] ≤ m · ϵAss1 = negl(λ).

Note that
Pr[Win] ≤ Pr[Win ∧ BadExt] + Pr[Win|¬BadExt]

Next, we will bound Pr[Win|¬BadExt] by showing a reduction to Assumption 2.

Commitment key generation. Based on the events above, B makes a secret guess b̂ ←$ {0, 1}.
Intuitively, b̂ = 1 corresponds to event BadCom, and a subcase of event BadY, whereas b̂ = 0
corresponds to a different subcase of BadY. Then, B simulates ck depending on b̂:

– If b̂ = 0, then B receives the input of the assumption and generates ck exactly as in the case
ŝ = 0 of the proof of evaluation binding for CFC. Namely, it samples α,β ←$ Fn, ηβ, ηγ ←$ F
and implicitly sets γ := σ and ηα := η from the input of the assumption. Then, it simulates the
remaining terms in ck accordingly.

– If b̂ = 1, then B proceeds as in the case ŝ = 1 of the proof of evaluation binding for CFC. Namely,
B samples ηα, rβ, rγ ←$ F, γ ←$ Fn and implicitly sets α := σ,β := τ , ηβ := rβ · η, ηγ := rγ · η.
Later, it simulates ck accordingly.

Next, B runs (A||EA)(ck) and parses the output as detailed before. The reduction proceeds
differently depending on the events above.

Event BadCom. If b̂ ̸= 1, then B aborts. We analyze the probability that Win ∧ BadCom occurs
given that BadExt does not occur. By ¬BadExt, there exist values x0,i such that Xi = comi =
[⟨xi,α⟩]1 + [x0,i]1 for all i ∈ [m]. By the occurrence of BadCom there must be an index h such that
x0,h ̸= 0. Using the fact that the proof produced by the adversary correctly verifies, we have that
for such h the following pairing identity (from the α→ β conversion) holds:

e

[⟨xh,α⟩]1 + [x0,h]1,
∑
i∈[n]

[
βiηβ
αi

]
2

 = e
(
π
(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
Let B compute X̃h = [⟨xh,α⟩]1 and X̃

(β)
h = [⟨xh,β⟩]1. Furthermore, B computes an honest

identity proof π̃
(β)
h to show that X̃h and X̃

(β)
h commit to the same value (i.e., for an α → β

conversion). Then, we can write the pairing identity as follows

48

e
(
X̃h, S

)
· e ([x0,h]1, S) = e

(
π
(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
e
(
π̃
(β)
h , [1]1

)
· e
(
X̃

(β)
h , [ηβ]2

)
· e ([x0,h]1, S) = e

(
π
(β)
h , [1]2

)
e
(
X

(β)
h , [ηβ]2

)
where the second equality follows by the correctness of π̃(β)

h . Also, for brevity, we let S =
∑

i∈[n]

[
βiηβ
αi

]
2
.

Moving terms to the right-hand side, we have:

e ([x0,h]1, S) = x0,h

∑
i∈[n]

βiηβ
αi


T

= e
(
π
(β)
h /π̃

(β)
h , [1]2

)
e
(
X

(β)
h /X̃

(β)
h , [ηβ]2

)
Then, B outputs (U, V, {Wi}i∈[n]) such that U := (X

(β)
h /X̃

(β)
h)rβ , V := π

(β)
h /π̃

(β)
h , and Wi =

rβ · [x0,h]1 for every i ∈ [n]. By the ck simulation procedure ηβ = rβ · η, therefore we have that
e(U, [η]2) · e(V, [1]2) =

∏
i e(Wi, S) breaking Assumption 2.

Event BadY: We will turn A into an adversary against Assumption 2. As an intermediate step, we
define a subroutine B∗ that, on input ck and access to (A||EA) outputs a tuple ((comi)i∈[m, f, comy, π, com

′
y, π

′)
against evaluation binding.

We build B∗ from A as follows. First, B∗ calls (A||EA)(ck), parses their output as before, and
computes y′ = f(x1, . . . ,xm). Then, B∗ calculates com′

y ← Com(ck,y) and outputs

((comi)i∈[m, f, comy, π, com
′
y, π

′)

where π′ is an honestly generated proof π′ ← CFC.Open(ck, (auxi)i∈[m], y, f).
Now, we show that if BadY occurs, then B∗ breaks evaluation binding. First, note that since

BadCom does not occur, we know that comi = Com(ck,xi) for every i ∈ [m]. If y = y′, then as
A wins it must be the case that comy ̸= Com(ck,y) = com′

y. Otherwise, if y ̸= y′, then we have
that comy ̸= com′

y (as the commitment is binding). In both cases, we break evaluation binding by
opening to two different commitments via a honest opening proof π′ to com′

y.
Finally, we define B as follows. After embedding the assumption on ck based on the choice of b̂,

B uses the output of (A||EA) to build B∗(ck) as an adversary against evaluation binding. Then, it
proceeds exactly as in the evaluation binding proof, aborting or not depending whether the output
of B∗(ck) is consistent with the guess b̂. Hence, if B∗ succeeds with probability ϵ, then B breaks the
HiKer assumption with probability ϵ/2.

We conclude the proof by noting that, since Assumption 2 implies the HiKer assumption, then

Pr[Win|¬BadExt] ≤ 2 · ϵAss2 = negl(λ).

D Proof of Claim in Correctness of Lattice-based CFC

The proof of the claim relies on the following fact about Kronecker products and vectorization.

Lemma 3. Let L,Z be matrices and v,x be vectors of compatible dimensions so that the product
vT · L · Z · x is well-defined. It holds that

vT · L · Z · x = (vec(Z)T ⊗ vT) · vec(xT ⊗ L).

49

Proof. The proof involves repeated applications of the identities vec(ABC) = (CT ⊗ A) · vec(B)
and vec(x) = x. We observe the following:

vT · L · Z · x = vT · vec(L · Z · x) = vT · (xT ⊗ L) · vec(Z)
= vec(vT · (xT ⊗ L) · vec(Z)) = (vec(Z)T ⊗ vT) · vec(xT ⊗ L)

⊓⊔

We are now ready to prove the claim in the correctness proof. We prove it by directly calculating

f̂(c1, . . . , cm, č1, . . . , čm)

= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · (v† ⊗ v̌†) · ch · čh′ +
∑
i∈[m]

Fh · v† · ch + e


= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · (v† ⊗ v̌†) · (vT ⊗ v̌T) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · v† · vT · xh + e


= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · ((v† · vT)⊗ (v̌† · v̌T)) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · v† · vT · xh + e


= v̄T ·

 ∑
h,h′∈[m]

Gh,h′ · ((I+ Zv)⊗ (I+ Zv̌)) · (xh ⊗ xh′) +
∑
i∈[m]

Fh · (I+ Zv) · xh + e


= c̄0 + v̄T ·

∑
h,h′∈[m]

Gh,h′ · ((I+ Zv)⊗ (I+ Zv̌)− I) · (xh ⊗ xh′) + v̄T ·
∑
i∈[m]

Fh · Zv · xh

= c̄0 +
∑

h,h′∈[m]

(vec((I+ Zv)⊗ (I+ Zv̌)− I)T ⊗ v̄T) · vec(xT
h ⊗ xT

h′ ⊗Gh,h′)

+
∑
i∈[m]

(vec(Zv)
T ⊗ v̄T) · vec(xT

h ⊗ Fh),

where the last equality follows from Lemma 3,

v̄T · v† · vT · y = v̄T · (I+ Zv) · y = c̄0 + v̄T · Zv · y, and

v̌T · v† · vT · y = v̌T · (I+ Zv) · y = č0 + v̌T · Zv · y.

50

Table of Contents

Chainable Functional Commitments for Unbounded-Depth Circuits . 1
David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai

1 Introduction . 1
1.1 Our Contribution . 2
1.2 Related and Concurrent Work . 5

2 A Technical Overview of Our Work . 6
2.1 (C)FC for Circuits from CFCs for Quadratic Functions . 6
2.2 A Framework for CFCs for Quadratic Functions . 7
2.3 Pairing-Based CFC . 9
2.4 Lattice-Based CFC . 10

3 Preliminaries . 11
3.1 Functional Commitments . 11
3.2 Additional Properties of FCs . 13

4 Chainable Functional Commitments . 14
5 FC for Circuits from CFC for Quadratic Polynomials . 16

5.1 Efficiency Tradeoffs . 19
6 Paring-based CFC for Quadratic Functions . 22

6.1 Preliminaries on Bilinear Groups and Assumption . 22
6.2 Our CFC Construction . 23
6.3 Correctness . 25
6.4 Succinctness . 26
6.5 Resulting Instantiations of FC for Circuits . 27
6.6 Proof of Security . 27
6.7 Efficient Verification . 31
6.8 Commitment Hiding . 31

7 Lattice-based CFC for Quadratic Functions . 31
7.1 Lattice Preliminaries . 32
7.2 Hardness Assumptions . 32
7.3 Construction . 34
7.4 Correctness . 36
7.5 Succinctness . 37
7.6 Resulting Instantiations of FC for Circuits . 37
7.7 Proof of Security . 38
7.8 Efficient Verification . 39
7.9 Commitment Hiding . 39

8 Conclusions . 40
A More on FCs and CFCs security notions . 41

A.1 Proof of Theorem 1 (zero-knowledge FC) . 41
A.2 Strong Evaluation Binding and Extractability . 42
A.3 Extractability of FC from CFC . 43

B Analysis of the HiKer Assumption in the Generic Bilinear Group Model 44

C Knowledge Extractability of the Pairing-based CFC for Quadratic Functions 45
D Proof of Claim in Correctness of Lattice-based CFC . 49

52

	Chainable Functional Commitments for Unbounded-Depth Circuits
	Introduction
	Our Contribution
	Related and Concurrent Work

	A Technical Overview of Our Work
	(C)FC for Circuits from CFCs for Quadratic Functions
	A Framework for CFCs for Quadratic Functions
	Pairing-Based CFC
	Lattice-Based CFC

	Preliminaries
	Functional Commitments
	Additional Properties of FCs

	Chainable Functional Commitments
	FC for Circuits from CFC for Quadratic Polynomials
	Efficiency Tradeoffs

	Paring-based CFC for Quadratic Functions
	Preliminaries on Bilinear Groups and Assumption
	Our CFC Construction
	Correctness
	Succinctness
	Resulting Instantiations of FC for Circuits
	Proof of Security
	Efficient Verification
	Commitment Hiding

	Lattice-based CFC for Quadratic Functions
	Lattice Preliminaries
	Hardness Assumptions
	Construction
	Correctness
	Succinctness
	Resulting Instantiations of FC for Circuits
	Proof of Security
	Efficient Verification
	Commitment Hiding

	Conclusions
	More on FCs and CFCs security notions
	Proof of Theorem 1 (zero-knowledge FC)
	Strong Evaluation Binding and Extractability
	Extractability of FC from CFC

	Analysis of the HiKer Assumption in the Generic Bilinear Group Model
	Knowledge Extractability of the Pairing-based CFC for Quadratic Functions
	Proof of Claim in Correctness of Lattice-based CFC

