21,825 research outputs found

    Development of subminiature multi-sensor hot-wire probes

    Get PDF
    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes

    Effect of short-term exposure to stereoscopic three-dimensional flight displays on real-world depth perception

    Get PDF
    High-fidelity color pictorial displays that incorporate depth cues in the display elements are currently available. Depth cuing applied to advanced head-down flight display concepts potentially enhances the pilot's situational awareness and improves task performance. Depth cues provided by stereopsis exhibit constraints that must be fully understood so depth cuing enhancements can be adequately realized and exploited. A fundamental issue (the goal of this investigation) is whether the use of head-down stereoscopic displays in flight applications degrade the real-world depth perception of pilots using such displays. Stereoacuity tests are used in this study as the measure of interest. Eight pilots flew repeated simulated landing approaches using both nonstereo and stereo 3-D head-down pathway-in-the-sky displays. At this decision height of each approach (where the pilot changes to an out-the-window view to obtain real-world visual references) the pilots changed to a stereoacuity test that used real objects. Statistical analysis of stereoacuity measures (data for a control condition of no exposure to any electronic flight display compared with data for changes from nonstereo and from stereo displays) reveals no significant differences for any of the conditions. Therefore, changing from short-term exposure to a head-down stereo display has no more effect on real-world relative depth perception than does changing from a nonstereo display. However, depth perception effects based on sized and distance judgements and on long-term exposure remain issues to be investigated

    Soil moisture and evapotranspiration predictions using Skylab data

    Get PDF
    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling

    Preliminary Results from Recent Measurements of the Antiprotonic Helium Hyperfine Structure

    Full text link
    We report on preliminary results from a systematic study of the hyperfine (HF) structure of antiprotonic helium. This precise measurement which was commenced in 2006, has now been completed. Our initial analysis shows no apparent density or power dependence and therefore the results can be averaged. The statistical error of the observable M1 transitions is a factor of 60 smaller than that of three body quantum electrodynamic (QED) calculations, while their difference has been resolved to a precision comparable to theory (a factor of 10 better than our first measurement). This difference is sensitive to the antiproton magnetic moment and agreement between theory and experiment would lead to an increased precision of this parameter, thus providing a test of CPT invariance.Comment: 6 pages, 4 figure

    Boundary-detection algorithm for locating edges in digital imagery

    Get PDF
    The author has identified the following significant results. Initial development of a computer program which implements a boundary detection algorithm to detect edges in digital images is described. An evaluation of the boundary detection algorithm was conducted to locate boundaries of lakes from LANDSAT-1 imagery. The accuracy of the boundary detection algorithm was determined by comparing the area within boundaries of lakes located using digitized LANDSAT imagery with the area of the same lakes planimetered from imagery collected from an aircraft platform

    Magnetic reconnection with anomalous resistivity in two-and-a-half dimensions I: Quasi-stationary case

    Full text link
    In this paper quasi-stationary, two-and-a-half-dimensional magnetic reconnection is studied in the framework of incompressible resistive magnetohydrodynamics (MHD). A new theoretical approach for calculation of the reconnection rate is presented. This approach is based on local analytical derivations in a thin reconnection layer, and it is applicable to the case when resistivity is anomalous and is an arbitrary function of the electric current and the spatial coordinates. It is found that a quasi-stationary reconnection rate is fully determined by a particular functional form of the anomalous resistivity and by the local configuration of the magnetic field just outside the reconnection layer. It is also found that in the special case of constant resistivity reconnection is Sweet-Parker and not Petschek.Comment: 15 pages, 4 figures, minor changes as compared to the 1st versio

    Transition radiation by matter-wave solitons in optical lattices

    Full text link
    We demonstrate that matter-wave solitary pulses formed from Bose condensed atoms moving inside optical lattices continuously radiate dispersive matter waves with prescribed momentum. Our analytical results for the radiation parameters and the soliton decay rate are found to be in excellent agreement with numerical modelling performed for experimentally relevant parameters.Comment: accepted to PR
    • …
    corecore