31,884 research outputs found
Meeting report: Thunderstorms
Copyright @ 2007 Royal Meteorological Societ
Method of measuring thermal conductivity of high performance insulation
Method accurately measures the thermal conductivity of high-performance sheet insulation as a discrete function of temperature. It permits measurements to be made at temperature drops of approximately 10 degrees F across the insulation and ensures measurement accuracy by minimizing longitudinal heat losses in the system
Semi-Classical Description of Antiproton Capture on Atomic Helium
A semi-classical, many-body atomic model incorporating a momentum-dependent
Heisenberg core to stabilize atomic electrons is used to study antiproton
capture on Helium. Details of the antiproton collisions leading to eventual
capture are presented, including the energy and angular momentum states of
incident antiprotons which result in capture via single or double electron
ionization, i.e. into [He or He], and the
distribution of energy and angular momentum states following the Auger cascade.
These final states are discussed in light of recently reported, anomalously
long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte
Pure phase-encoded MRI and classification of solids
Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids
Inside the Bondi radius of M87
Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve
the hot gas structure across the Bondi accretion radius of the central
supermassive black hole, a measurement possible in only a handful of systems
but complicated by the bright nucleus and jet emission. By stacking only short
frame-time observations to limit pileup, and after subtracting the nuclear PSF,
we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc
(1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we
detect two significant temperature components, which are consistent with
constant values of 2 keV and 0.9 keV down to 0.15 kpc radius. No evidence was
found for the expected temperature increase within ~0.25 kpc due to the
influence of the SMBH. Within the Bondi radius, the density profile is
consistent with . The lack of a temperature increase inside
the Bondi radius suggests that the hot gas structure is not dictated by the
SMBH's potential and, together with the shallow density profile, shows that the
classical Bondi rate may not reflect the accretion rate onto the SMBH. If this
density profile extends in towards the SMBH, the mass accretion rate onto the
SMBH could be at least two orders of magnitude less than the Bondi rate, which
agrees with Faraday rotation measurements for M87. We discuss the evidence for
outflow from the hot gas and the cold gas disk and for cold feedback, where gas
cooling rapidly from the hot atmosphere could feed the cirumnuclear disk and
fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component
represents ~20% of the total X-ray gas mass and, by losing angular momentum to
the hot gas component, could provide a fuel source of cold clouds within the
Bondi radius.Comment: 14 pages, 8 figures, accepted by MNRA
An inlet analysis for the NASA hypersonic research engine aerothermodynamic integration model
A theoretical analysis for the inlet of the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM) has been undertaken by use of a method-of-characteristics computer program. The purpose of the analysis was to obtain pretest information on the full-scale HRE inlet in support of the experimental AIM program (completed May 1974). Mass-flow-ratio and additive-drag-coefficient schedules were obtained that well defined the range effected in the AIM tests. Mass-weighted average inlet total-pressure recovery, kinetic energy efficiency, and throat Mach numbers were obtained
Initial POLAR MFE observation of substorm signatures in the polar magnetosphere
This paper studies substorm influences in the polar magnetosphere using data from the POLAR magnetic field experiment (MFE). The POLAR spacecraft remains in the high altitude polar magnetosphere for extended periods around apogee. There it can stay at nearly constant altitude through all phases of a substorm, which was not possible on previous missions. We report such an event on March 28, 1996. Ground magnetometers monitored substorm activity, while the POLAR spacecraft, directly over the pole at (−0.8, −0.6, 8.5) RE in GSM coordinates, observed a corresponding perturbation in the total magnetic field strength. The total magnetic field first increased, then recovered toward quiet levels, consistent with erosion of magnetic flux from the dayside magnetosphere, followed by transport of that flux to the magnetotail, and eventual onset of tail reconnection and the return of that magnetic flux to the dayside magnetosphere
Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements
A Lagrangian radiation fog model is applied to a fog event at Summit, Greenland. The model simulates the formation and dissipation of fog. Included in the model are detailed gas and aqueous phase chemistry, and deposition of chemical species with fog droplets. Model predictions of the gas phase concentrations of H2O2, HCOOH, SO2, and HNO3 as well as the fog fluxes of S(VI), N(V), H2O2, and water are compared with measurements. The predicted fluxes of S(VI), N(V), H2O2, and fog water generally agree with measured values. Model results show that heterogeneous SO2 oxidation contributes to approximately 40% of the flux of S(VI) for the modeled fog event, with the other 60% coming from preexisting sulfate aerosol. The deposition of N(V) with fog includes contributions from HNO3 and NO2 initially present in the air mass. HNO3 directly partitions into the aqueous phase to create N(V), and NO2 forms N(V) through reaction with OH and the nighttime chemistry set of reactions which involves N2O5 and water vapor. PAN contributes to N(V) by gas phase decomposition to NO2, and also by direct aqueous phase decomposition. The quantitative contributions from each path are uncertain since direct measurements of PAN and NO2 are not available for the fog event. The relative contributions are discussed based on realistic ranges of atmospheric concentrations. Model results suggest that in addition to the aqueous phase partitioning of the initial HNO3 present in the air mass, the gas phase decomposition of PAN and subsequent reactions of NO2 with OH as well as nighttime nitrate chemistry may play significant roles in depositing N(V) with fog. If a quasi-liquid layer exists on snow crystals, it is possible that the reactions taking place in fog droplets also occur to some extent in clouds as well as at the snow surface
- …