44 research outputs found

    Phylogenetic diversity promotes ecosystem stability

    Get PDF
    Ecosystem stability in variable environments depends on the diversity of form and function of the constituent species. Species phenotypes and ecologies are the product of evolution, and the evolutionary history represented by co-occurring species has been shown to be an important predictor of ecosystem function. If phylogenetic distance is a surrogate for ecological differences, then greater evolutionary diversity should buffer ecosystems against environmental variation and result in greater ecosystem stability. We calculated both abundance-weighted and unweighted phylogenetic measures of plant community diversity for a long-term biodiversity–ecosystem function experiment at Cedar Creek, Minnesota, USA. We calculated a detrended measure of stability in aboveground biomass production in experimental plots and showed that phylogenetic relatedness explained variation in stability. Our results indicate that communities where species are evenly and distantly related to one another are more stable compared to communities where phylogenetic relationships are more clumped. This result could be explained by a phylogenetic sampling effect, where some lineages show greater stability in productivity compared to other lineages, and greater evolutionary distances reduce the chance of sampling only unstable groups. However, we failed to find evidence for similar stabilities among closely related species. Alternatively, we found evidence that plot biomass variance declined with increasing phylogenetic distances, and greater evolutionary distances may represent species that are ecologically different (phylogenetic complementarity). Accounting for evolutionary relationships can reveal how diversity in form and function may affect stability

    The relationship between environmental niche breadth and geographic range size across plant species

    Get PDF
    Aim A positive association between environmental niche breadth and geographic range size across species (RS‐NB association) is considered a major macroecological pattern and a key mechanism explaining differences in commonness and rarity among species. It is typically assumed that niche breadth determines range size. We explore ways in which spurious positive RS‐NB associations can arise through sampling artefacts, in the absence of any ecological or evolutionary link between the two variables. Location Australia and Africa. Methods We used a process‐based simulation model to explore the influence of spatial autocorrelation in the environment, and the rate of neutral range evolution, on the slope of the RS‐NB association. We quantified niche breadth in four large plant genera (Banksia, Hakea, Protea and Moraea) using up to 12 environmental variables and accounting for variable numbers of occurrence records, and we tested RS‐NB associations using phylogenetic generalized least‐squares (PGLS) models. We compared observed patterns to two null models that break the link between species occurrences and environmental conditions in different ways. Results The simulations show that positive RS‐NB associations are generated even under random diversification and neutral range evolution, when the environment is spatially autocorrelated. There were strong positive interspecific RS‐NB associations in all four plant genera, but in most cases, PGLS slopes for the four genera were similar to those generated by the null models. After accounting for sampling effects under the two the null models by calculating the standardized effect sizes of species’ niche breadths, there was little evidence of general, positive associations between range size and niche breadth. Main Conclusions Positive RS‐NB associations in our four plant genera do not necessarily result from an ecological or evolutionary link between niche breadth and range size but may largely reflect the historical legacy of speciation and limited dispersal, biotic interactions or other constraints on range expansion. Our results suggest that niche breadth as a general determinant of range extent among species should not be assumed without testing and correcting for spatial sampling effects.This work was supported by Australian Research Council Discovery Grant DP110103168

    phyr: Anrpackage for phylogenetic species-distribution modelling in ecological communities

    Get PDF
    Model-based approaches are increasingly popular in ecological studies. A good example of this trend is the use of joint species distribution models to ask questions about ecological communities. However, most current applications of model-based methods do not include phylogenies despite the well-known importance of phylogenetic relationships in shaping species distributions and community composition. In part, this is due to a lack of accessible tools allowing ecologists to fit phylogenetic species distribution models easily. To fill this gap, therpackagephyr(pronounced fire) implements a suite of metrics, comparative methods and mixed models that use phylogenies to understand and predict community composition and other ecological and evolutionary phenomena. Thephyrworkhorse functions are implemented in C++ making all calculations and model estimations fast. phyrcan fit a variety of models such as phylogenetic joint-species distribution models, spatiotemporal-phylogenetic autocorrelation models, and phylogenetic trait-based bipartite network models.phyralso estimates phylogenetically independent trait correlations with measurement error to test for adaptive syndromes and performs fast calculations of common alpha and beta phylogenetic diversity metrics. Allphyrmethods are united under Brownian motion or Ornstein-Uhlenbeck models of evolution, and phylogenetic terms are modelled as phylogenetic covariance matrices. The functions and model formula syntax we propose inphyrprovide an easy-to-use collection of tools that we hope will ignite the use of phylogenies to address a variety of ecological questions

    Phylogenetic diversity metrics from molecular phylogenies: modelling expected degree of error under realistic rate variation

    Get PDF
    Aim Phylogenetic diversity or phylo‐diversity measures use information about evolutionary history and relationships to inform conservation priorities. These metrics are usually derived from the branches of molecular phylogenies. But inferring phylogenetic timescale from molecular data relies on many assumptions about the evolutionary process, most of which are based on statistical convenience rather than biological information. Here we ask whether known patterns of variation in rate of molecular evolution can lead to errors in phylo‐diversity measures. Location Global. Methods We generated sequences with biologically realistic rate variation, parameterized by empirically well‐supported relationships between species traits, macroevolutionary patterns and rate of molecular evolution. We then tested how well commonly used phylo‐diversity measures from these phylogenies reflected the true evolutionary history. Results We show that reconstructed Faith's phylogenetic diversity (FPD) measures differ from true values by an average of about 10% and up to 38%. Species rankings based on evolutionary distinctness (ED) are also affected by rate variation, with the ranks of taxa changing by up to 10‐11 positions after estimation. Main conclusions We have shown that realistic levels of rate variation can generate error in FPD and ED measures that could potentially influence prioritization ranking. Studies using metrics based on molecular phylogenetic branch lengths should consider the likely effect of uncertainty in phylogenetic reconstruction on their conclusions.This work was supported by the Australian Research Council grant DP19010191

    Episodic population fragmentation and gene flow reveal a trade-off between heterozygosity and allelic richness

    Get PDF
    In episodic environments like deserts, populations of some animal species exhibit irregular fluctuations such that populations are alternately large and connected or small and isolated. Such dynamics are typically driven by periodic resource pulses due, for example, to large but infrequent rainfall events. The repeated population bottlenecks resulting from fragmentation should lower genetic diversity over time, yet species undergoing these fluctuations appear to maintain high levels of genetic diversity. To resolve this apparent paradox, we simulated a metapopulation of constant size undergoing repeat episodes of fragmentation and change in gene flow to mimic outcomes experienced by mammals in an Australian desert. We show that episodic fragmentation and gene flow have contrasting effects on two measures of genetic diversity: heterozygosity and allelic richness. Specifically, fragmentation into many, small subpopulations, coupled with periods of infrequent gene flow, preserves allelic richness at the expense of heterozygosity. In contrast, fragmentation into a few, large subpopulations maintains heterozygosity at the expense of allelic richness. The strength of the trade-off between heterozygosity and allelic richness depends on the amount of gene flow and the frequency of gene flow events. Our results imply that the type of genetic diversity maintained among species living in strongly fluctuating environments will depend on the way populations fragment, with our results highlighting different mechanisms for maintaining allelic richness and heterozygosity in small, fragmented populations

    Symbiosis limits establishment of legumes outside their native range at a global scale

    Get PDF
    Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distribution

    ENMTools 1.0: an R package for comparative ecological biogeography

    Get PDF
    The ENMTools software package was introduced in 2008 as a platform for making measurements on environmental niche models (ENMs, frequently referred to as species distribution models or SDMs), and for using those measurements in the context of newly developed Monte Carlo tests to evaluate hypotheses regarding niche evolution. Additional functionality was later added for model selection and simulation from ENMs, and the software package has been quite widely used. ENMTools was initially implemented as a Perl script, which was also compiled into an executable file for various platforms. However, the package had a number of significant limitations; it was only designed to fit models using Maxent, it relied on a specific Perl distribution to function, and its internal structure made it difficult to maintain and expand. Subsequently, the R programming language became the platform of choice for most ENM studies, making ENMTools less usable for many practitioners. Here we introduce a new R version of ENMTools that implements much of the functionality of its predecessor as well as numerous additions that simplify the construction, comparison and evaluation of niche models. These additions include new metrics for model fit, methods of measuring ENM overlap, and methods for testing evolutionary hypotheses. The new version of ENMTools is also designed to work within the expanding universe of R tools for ecological biogeography, and as such includes greatly simplified interfaces for analyses from several other R packages

    Explaining ecosystem multifunction with evolutionary models

    Get PDF
    Ecosystem function is the outcome of species interactions, traits, and niche overlap – all of which are influenced by evolution. However, it is not well understood how the tempo and mode of niche evolution can influence ecosystem function. In evolutionary models where either species differences accumulate through random drift in a single trait or species differences accumulate through divergent selection among close relatives, we should expect that ecosystem function is strongly related to diversity. However, when strong selection causes species to converge on specific niches or when novel traits that directly affect function evolve in some clades but not others, the relationship between diversity and ecosystem function might not be very strong. We test these ideas using a field experiment that established plant mixtures with differing phylogenetic diversities and we measured ten different community functions. We show that some functions were strongly predicted by species richness and mean pairwise phylogenetic distance (MPD, a measure of phylogenetic diversity), including biomass production and the reduction of herbivore and pathogen damage in polyculture, while other functions had weaker (litter production and structural complexity) or nonsignificant relationships (e.g., flower production and arthropod abundance) with MPD and richness. However, these divergent results can be explained by different models of niche evolution. These results show that diversity‐ecosystem function relationships are the product of evolution, but that the nature of how evolution influences ecosystem function is complex

    Disturbance Alters the Phylogenetic Composition and Structure of Plant Communities in an Old Field System

    Get PDF
    The changes in phylogenetic composition and structure of communities during succession following disturbance can give us insights into the forces that are shaping communities over time. In abandoned agricultural fields, community composition changes rapidly when a field is plowed, and is thought to reflect a relaxation of competition due to the elimination of dominant species which take time to re-establish. Competition can drive phylogenetic overdispersion, due to phylogenetic conservation of ‘niche’ traits that allow species to partition resources. Therefore, undisturbed old field communities should exhibit higher phylogenetic dispersion than recently disturbed systems, which should be relatively ‘clustered’ with respect to phylogenetic relationships. Several measures of phylogenetic structure between plant communities were measured in recently plowed areas and nearby ‘undisturbed’ sites. There was no difference in the absolute values of these measures between disturbed and ‘undisturbed’ sites. However, there was a difference in the ‘expected’ phylogenetic structure between habitats, leading to significantly lower than expected phylogenetic diversity in disturbed plots, and no difference from random expectation in ‘undisturbed’ plots. This suggests that plant species characteristic of each habitat are fairly evenly distributed on the shared species pool phylogeny, but that once the initial sorting of species into the two habitat types has occurred, the processes operating on them affect each habitat differently. These results were consistent with an analysis of correlation between phylogenetic distance and co-occurrence indices of species pairs in the two habitat types. This study supports the notion that disturbed plots are more clustered than expected, rather than ‘undisturbed’ plots being more overdispersed, suggesting that disturbed plant communities are being more strongly influenced by environmental filtering of conserved niche traits

    Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory

    Get PDF
    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale
    corecore