36,493 research outputs found

    Powerful jets from accreting black holes: evidence from the optical and infrared

    Full text link
    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.Comment: 26 pages, 4 figures, 1 table. Invited chapter for the edited book "Black Holes and Galaxy Formation", Nova Science Publishers, Inc., at pres

    Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    Get PDF
    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length

    Lidar measurements of stratospheric aerosols over Menlo Park, California, October 1972 - March 1974

    Get PDF
    During an 18-month period, 30 nighttime observations of stratospheric aerosols were made using a ground based ruby lidar located near the Pacific coast of central California (37.5 deg. N, 122.2 deg. W). Vertical profiles of the lidar scattering ratio and the particulate backscattering coefficient were obtained by reference to a layer of assumed negligible particulate content. An aerosol layer centered near 21 km was clearly evident in all observations, but its magnitude and vertical distribution varied considerably throughout the observation period. A reduction of particulate backscattering in the 23- to 30-km layer during late January 1973 appears to have been associated with the sudden stratospheric warming which occurred at that time

    Crew appliance concepts. Volume 2, appendix B: Shuttle orbiter appliances supporting engineering data

    Get PDF
    Technical data collected for the food management and personal hygiene appliances considered for the shuttle orbiter are presented as well as plotted and tabulated trade study results for each appliance. Food storage, food operation, galley cleanup, waste collection/transfer, body cleansing, and personal grooming were analyzed

    Lidar measurements of the post-fuego stratospheric aerosol

    Get PDF
    Fifteen lidar observations of the stratospheric aerosol were made between February and November 1975. All observations revealed the greatly increased particulate backscattering that followed the eruption of the volcano Fuego in October 1974. Vertical structure consisted initially of multiple layers, which later merged to form a single, broader peak. Essentially all of the increased scattering was confined to altitudes below 20 km. Hence, aerosol layer centroids in 1975 were typically several km below their altitude prior to the eruption. Radiative and thermal consequences of the measured post-Fuego layer were computed using several recently published models. The models predict a temperature increase of several K at the altitude of the layer, caused by the infrared absorption bands of the sulfuric acid particles. The surface temperature decrease predicted by the models is considerably smaller than 1 K, partly because of the small optical thickness of the volcanic layer, and partly because of its short residence time relative to the earth-ocean thermal response time

    Crew appliance concepts. Volume 4, appendix C: Modular space station appliances supporting engineering data

    Get PDF
    Data collected for the appliances considered for the space station are presented along with plotted and tabulated trade study results for each appliance. The food management, and personal hygiene data are applicable to a six-man mission of 180-days
    corecore