1,840 research outputs found

    Thermographic Qualification of Graphite/Epoxy Instrumentation Racks

    Get PDF
    A nondestructive evaluation method is desired for ensuring the 'as manufactured' and 'post service' quality of graphite/epoxy instrumentation rack shells. The damage tolerance and geometry of the racks dictate that the evaluation method be capable of identifying defects, as small as 0.25 inch 2 in area, over large acreage regions, tight compound radii and thickness transition zones. The primary defects of interest include voids, inclusions, delaminations and porosity. The potential for an infrared thermographic inspection to replace ultrasonic testing, for qualifying the racks as 'defect free' is under investigation. The inspection process is validated by evaluating defect standard panels built to the same specifications as the racks, except for the insertion of artificial fabricated defects. The artificial defects are designed to match those which are most prevalent in the actual instrumentation racks. A target defect area of 0.0625 inch 2 (a square with 0.25 inch on a side) was chosen for the defect standard panels to ensure the ability to find all defects of the critical (0.25 inch squared) size

    A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    Get PDF
    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set

    Future Climate Change under SSP Emission Scenarios with GISS-E2.1

    Get PDF
    Abstract This paper presents the response to anthropogenic forcing in the GISS-E2.1 climate models for the 21st century Shared Socioeconomic Pathways (SSPs) emission scenarios within the Coupled Model Intercomparison Project phase 6 (CMIP6). The experiments were performed using an updated and improved version of the NASA Goddard Institute for Space Studies (GISS) coupled general circulation model that includes two different versions for atmospheric composition: a non-interactive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE) and the One-Moment Aerosol model (OMA) version with fully interactive aerosols which includes a parameterized first indirect aerosol effect on clouds. The effective climate sensitivities are 3.0ÂșC and 2.9ÂșC for the NINT and OMA models, respectively. Each atmospheric version is coupled to two different ocean general circulation models: the GISS ocean model (E2.1-G) and HYCOM (E2.1-H). We describe the global mean responses for all future scenarios and spatial patterns of change for surface air temperature and precipitation for four of the marker scenarios: SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5. By 2100, global mean warming ranges from 1.5ÂșC to 5.2ÂșC relative to 1850-1880 mean temperature. Two high-mitigation scenarios SSP1-1.9 and SSP1-2.6 limit the surface warming to below 2°C by the end of the 21st century, except for the NINT E2.1-H model that simulates 2.2°C of surface warming. For the high emission scenario SSP5-8.5, the range is 4.6-5.2ÂșC at 2100. Due to about 15\% larger effective climate sensitivity (ECS) and stronger transient climate response (TCR) in both NINT and OMA CMIP6 models compared to CMIP5 versions, there is a stronger warming by 2100 in the SSP emission scenarios than in the comparable RCP scenarios in CMIP5. Changes in sea ice area are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with the largest sea ice area decreases occurring during September in the Northern Hemisphere in both E2.1-G (-1.21×106 km2/°C) and E2.1-H models (-0.94×106 km2/°C). Both coupled models project decreases in the Atlantic overturning stream function by 2100. The largest decrease of 56-65\% in the 21st century overturning stream function is produced in the warmest scenario SSP5-8.5 in the E2.1-G model, comparable to the reduction in the corresponding CMIP5 GISS-E2 RCP8.5 simulation. Both low-end scenarios SSP1-1.9 and SSP1-2.6 also simulate substantial reductions of the overturning (9-37\%) with slow recovery of about 10\% by the end of the 21st century (relative to the maximum decrease at the middle of the 21st century)Development of GISS-E2.1 was supported by the NASA Modeling, Analysis, and Prediction (MAP) Program. CMIP6 simulations with GISS-E2.1 were made possible by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We thank Ellen Salmon and the NCCS staff for hosting and providing convenient access to the model output. CMIP6 standard variables analyzed in this study are available through the Earth System Grid Federation and from https://portal.nccs.nasa.gov/datashare/giss_cmip6.Peer Reviewed"Article signat per 46 autors/es: Larissa S. Nazarenko, Nick Tausnev, Gary L. Russell, David Rind, Ron L. Miller, Gavin A. Schmidt, Susanne E. Bauer, Maxwell Kelley, Reto Ruedy, Andrew S. Ackerman, Igor Aleinov, Michael Bauer, Rainer Bleck, Vittorio Canuto, GrĂ©gory Cesana, Ye Cheng, Thomas L. Clune, Ben I. Cook, Carlos A. Cruz, Anthony D. Del Genio, Gregory S. Elsaesser, Greg Faluvegi, Nancy Y. Kiang, Daehyun Kim, Andrew A. Lacis, Anthony Leboissetier, Allegra N. LeGrande, Ken K. Lo, John Marshall, Elaine E. Matthews, Sonali McDermid, Keren Mezuman, Lee T. Murray, Valdar Oinas, Clara Orbe, Carlos PĂ©rez GarcĂ­a-Pando, Jan P. Perlwitz, Michael J. Puma, Anastasia Romanou, Drew T. Shindell, Shan Sun, Kostas Tsigaridis, George Tselioudis, Ensheng Weng, Jingbo Wu, Mao-Sung Yao "Postprint (author's final draft

    The facilitation of aggression by aggression: Evidence against the catharsis hypothesis.

    Get PDF

    Versatile Potentiostat with Optional Computer Control

    Get PDF
    A versatile potentiostat which can supply a maximum of 125 ma is described. The potentiostat uses readily available electronic components and an interface is detailed which allows the potentiostat optional computer control

    U.S. Government engagement in support of global disease surveillance

    Get PDF
    Global cooperation is essential for coordinated planning and response to public health emergencies, as well as for building sufficient capacity around the world to detect, assess and respond to health events. The United States is committed to, and actively engaged in, supporting disease surveillance capacity building around the world. We recognize that there are many agencies involved in this effort, which can become confusing to partner countries and other public health entities. This paper aims to describe the agencies and offices working directly on global disease surveillance capacity building in order to clarify the United States Government interagency efforts in this space

    Rat Stem-Cell Factor Induces Splenocytes Capable Of Regenerating The Thymus

    Get PDF
    Cytokine regulation of prethymic T-lymphoid progenitor-cell proliferation and/or differentiation has not been well-defined, although much is known of cytokine regulation of hemopoietic stem- and progenitor-cell development. Here we use a recently identified hemopoietic growth factor, stem-cell factor (SCF) (a form of the c-kit ligand), and a transplant model of thymocyte regeneration to assess the effect of SCF on the in vivo generation of prethymic, thymocyte progenitor-cell activity. We show that recombinant rat SCF (rrSCF164 administered to weanling rats selectively induces an increase in thymocyte progenitor activity in the spleens of treated rats as compared to rats treated with vehicle, polyethylene glycol (PEG)-conjugated rat albumin, or recombinant human granulocyte colony-stimulating factor (rhG-CSF). These data demonstrate that administration of SCF in vivo affects extrathymic-origin thymocyte regenerating cells and may influence, directly or indirectly, early prethymic stages of T-cell lymphopoiesis in addition to its known effect on early stages of myelopoiesis and erythropoiesis
    • 

    corecore