Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

U.S. GEOLOGICAL SURVEY Open-File Report 96-599 FEB 1 4 1997 O S T 1 Prepared in cooperation with the U.S. DEPARTMENT OF ENERGY, under Interagency Agreement DE-AI08-91NV11040

MASTER

그는 것 같아요. 이 것 같아요. 이 것 같아요. 아이들 것 같아요. 아이들 것 같아요. 이 가지 않는 것 같아.

4565-OFR--96-599

Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

By Gary M. Russell and Glenn L. Locke

U.S. GEOLOGICAL SURVEY

Open-File Report 96-599

Prepared in cooperation with the U.S. DEPARTMENT OF ENERGY, under Interagency Agreement DE-AI08-91NV11040

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED,

Carson City, Nevada 1997

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director

Any use of trade names in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Government

For additional information write to:

District Chief U.S. Geological Survey 333 West Nye Lane, Room 203 Carson City, NV 89706-0866 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286, MS 517 Denver, CO 80225-0046

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTENTS

Abstract	1
Introduction	1
Background	3
Purpose and Scope	3
Description of Study Area	3
Geohydrologic Setting	
Geology	5
Ground Water	5
The Schooner Event	6
Previous Studies	9
Acknowledgments	9
Summary of Data on Well PM-2	9
Well Construction	9
Log Characteristics	11
Geologic Characteristics	11
Soil Characteristics	11
Hydrologic Characteristics	15
Water-Quality Analyses	15
Field Water Quality, Tritium, and Krypton	15
Carbon-14, Chlorine-36, and Strontium-90	18
Helium Age Dating	18
Gamma Spectral	18
Gross Alpha and Gross Beta	19
Plutonium	19
Inorganic Constituents	19
Organic Compounds	20
Summary	20
References Cited	21
Appendix A. Hole History, Well History, Core Samples, and Cementing Record for Well PM-2	
Appendix B. Geophysical Logs Available for Well PM-2	39
Appendix C. Summary of Soil-Sampling Surveys at Well PM-2	
Appendix D. Summary of Hydrologic Testing at Well PM-2	
Appendix E. Summary of Water-Quality Data for Well PM-2 from Lawrence Livermore National Laboratory	61
Appendix F. Summary of Water-Quality Data for Well PM-2 from Reynolds Electrical & Engineering Company	67

FIGURES

. .

.

1

2
4
5
6
7
8

· · ;-

14

CONTENTS III

.

٠

7-9. Diagrams showing well PM-2:	
7. Construction details from drillers' log	10
8. Soil-sampling sites adjacent to well PM-2	14
9. Water-quality data collected August 17, 1993, and September 27, 1993	16

TABLES

1. Summary of lithologic log of well PM-2	
2. Soil moisture, tritium, and gamma spectroscopy analysis of soil samples around well PM-2, November 19, 1993	13
3. Summary of water-level measurements at well PM-2, 1983-94	15
4. Tritium analysis of water samples from well PM-2, 1993-94	17
5. Krypton-85 analysis of water samples from well PM-2, 1993-94	18
6. Analysis of carbon-14, chlorine-36, and strontium-90 in water samples from well PM-2,	
November 29-December 1, 1993	18
7. Helium-3 and helium-4 analyses used to determine age of water samples from well PM-2,	
November 29-December 1, 1993	18
8. Gamma spectral analysis of water samples from well PM-2, 1993-94	19
9. Analysis of combined plutonium-238 and plutonium-239 in raw water samples from well PM-2, May 3-4, 1994	19
10. Volatile and semivolatile organic compounds in water samples from well PM-2, November 29-December 1, 1993	21

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
becquerel (Bq)	27.027	picocurie
centimeter (cm)	0.3937	inch
gram (g)	0.03527	ounce avoirdupois
kilometer (km)	0.62137	mile
meter (m)	3.281	feet
square kilometer (km ²)	0.3861	square mile

Temperature: Degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) by using the formula ${}^{\circ}F = [1.8({}^{\circ}C)]+32$.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929, formerly called "Sea-Level Datum of 1929"), which is derived from a general adjustment of the first-order leveling networks of the United States and Canada.

Chemical symbols used in text:

Ag Al Am B Ba C Ca Cl Co Cr Cs Cy	silver aluminum americium boron barium carbon calcium chlorine cobalt chromium cesium	Fe Ge Hg K Kr Li Mg Mn Mo Na	iron germanium helium mercury potassium krypton lithium magnesium manganese molybdenum sodium	Pb Pu Ra S Sb Se Si Sr Th ³ H U	lead plutonium radium sulfur antimony selenium silicon strontium thorium tritium uranium
	cesium			U	uranium
Cu	copper	Ni	nickel	Zn	zinc
Eu	europium	Р	phosphorus		

Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

By Gary M. Russell and Glenn L. Locke

ABSTRACT

Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the U.S. Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation.

The nearest underground test in the immediate area of well PM-2 was the 1968 Schooner event (U-20u), detonated approximately 270 meters southeast of the well PM-2 at a depth of 108.2 meters. The crater created by the Schooner event is about 129.8 meters in radius and 63.4 meters in depth. The continuous-ejecta limit (the outermost limit of continuous deposits of earth materials thrown out and away from the explosion) was asymmetrical, ranging in radius from about 518 to 823 meters. The maximum extent of ejected earth materials exceeded 1,830 meters.

Results of soil sampling indicate that radioactivity of identifiable nonnaturally occurring fission and activation products (americium-241, cobalt-60, cesium-137, europium-150, europium-152, and europium-154) were the same order of magnitude as that of the natural radiation (krypton-40, radium-226, thorium-228, thorium-232). Gamma spectrum analysis of each soil sample had numerous unidentified peaks with high counting errors.

- ...

Close agreement between tritium analyses of water from well PM-2, at different times and at the same depths, confirms the elevated levels of tritium. The highest tritium values in the borehole were at 610 meters below land surface—above the shallowest perforations at 765 meters below land surface. These values were only slightly higher than values found at greater depth in the well.

Values for gamma spectral analysis of water samples were near or below detection limits with the exception of radium-226 at 305 and 823 meters below land surface. Radium-226 is probably a natural decay product from uranium-238. Laboratory analysis indicates that the gamma radiation in well PM-2 was minor.

INTRODUCTION

The Nevada Test Site (NTS) includes about 3,600 km² in Nye County, southern Nevada, and is about 105 km northwest of Las Vegas (fig. 1). NTS is surrounded on the north, east, and west by Nellis Air Force Range (NAFR). This combination of federally owned lands constitutes the largest unpopulated area in the Nation, covering about 14,200 km². The NTS was established in December 1950 as the principal location for national testing of nuclear devices. The first nuclear test occurred on January 27, 1951. The first underground nuclear test occurred on November 29, 1951. Since July 11, 1962, all nuclear tests in the United States have been detonated underground; most of them at NTS. A total of 928 nuclear tests have been conducted at NTS-100 tests were atmospheric and 828 were underground (U.S. Department of Energy, 1994). Four major areas were used for testing: Frenchman Flat, Yucca Flat, Rainier Mesa, and Pahute Mesa (fig. 1).

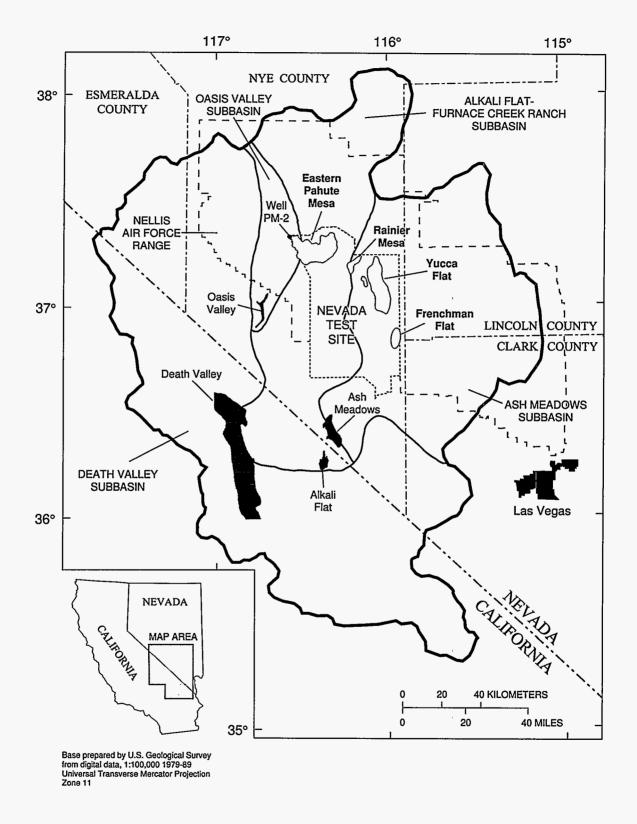


Figure 1. Death Valley ground-water-flow system and subbasins, southern Nevada and eastern California, showing location of Nevada Test Site and well PM-2 (compiled from Laczniak and others, 1996).

. ' ·

2 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

Ĩ.,

Background

Well Pahute Mesa No. 2 (PM-2) is on eastern Pahute Mesa in the extreme northwestern corner of Area 20 approximately 105 m south of the northern NTS boundary and 275 m northeast of the western boundary (figs. 2 and 3). On May 20, 1993, the water level in well PM-2 was measured at 254.96 m below land surface, 4.77 m higher than a measurement 1 year earlier (fig. 4). During the 10 years prior to May 1993, the water level had not been detected to fluctuate more than 0.65 m. Projections of the rate of decline, following the high measurement, suggested the water level would return to pre-May 1993 levels in approximately 2 years.

The unexpected rise in water level and the ensuing, steady decline indicated that recharge may have taken place. In August 1993, the U.S. Geological Survey collected water samples for analysis of field characteristics, including specific conductance, to determine if the rise and subsequent decline in the water level might have been caused by recharge through the well bore rather than through the aquifer. Water samples were delivered to the Environmental Monitoring Systems Laboratory - Las Vegas (EMSL) of the U.S. Environmental Protection Agency (USEPA) for radiological testing. USEPA analysis indicated ³H concentrations of 21,000 Bq/L. Possible sources of contamination of the water from well PM-2 include (1) prompt injection at the time of the Schooner event; (2) recharge from the Schooner crater; (3) water introduced during drilling and hydraulic testing of well PM-2; (4) migration of contamination from Schooner or other underground tests; (5) contaminated materials disposed of in the well; and (6) recharge through the borehole.

The U.S. Geological Survey (USGS) was directed by the U.S. Department of Energy (USDOE) under interagency agreement DE-AI08-91NV11040, as a part of the existing Hydrologic Resources Manage-

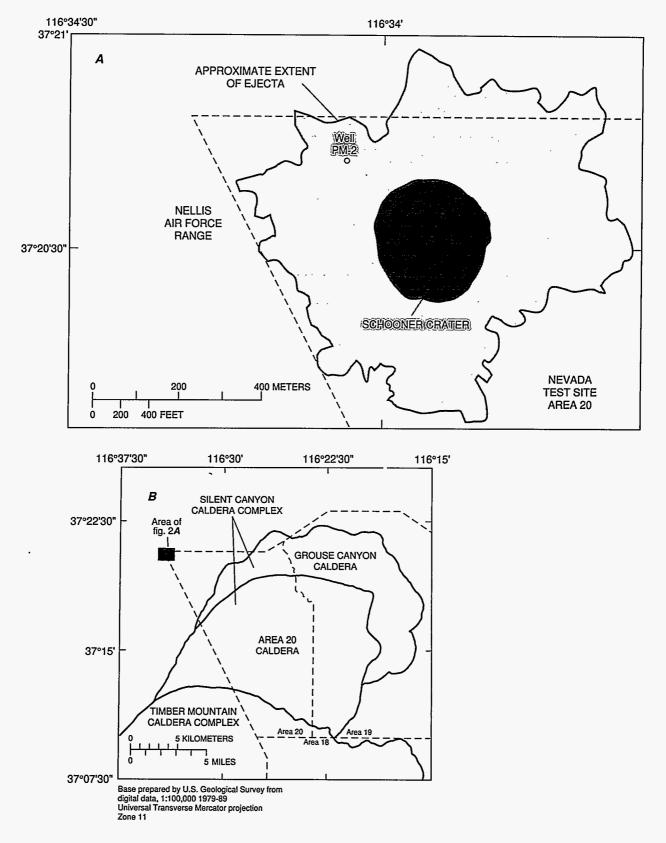
EXPLANATION

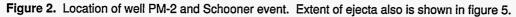
Area used for nuclear testing

Ground-water discharge area in Death Valley flow system

Approximate boundary of Death Valley ground-water flow system-Subbasins within flow system are indicated

ment Program (HRMP), to participate in investigating the occurrence of tritiated waters in well PM-2. Other HRMP member agencies involved with the investigation included Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Desert Research Institute (DRI), and Reynolds Electrical and Engineering Co. (REECo).


Purpose and Scope


The purpose of this report is to present existing information and results from a coordinated investigation of ³H occurrence in well PM-2 by the HRMP. The objectives of the overall investigation include (1) determination of the type and concentration of contamination. (2) identification of the source and mechanism of contamination, (3) estimation of the extent of radiological contamination, (4) initiation of appropriate monitoring of the contamination, and (5) reporting of investigation results. This report addresses objective five. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water-quality data.

The six appendices herein, as well as tables 2 and 4-10, present data and information provided by several agencies. Nomenclature reproduced in the appendices does not necessarily conform to terminology used by the U.S. Geological Survey. Likewise, numerical data presented in the appendices and in tables 2 and 4-10 do not necessarily conform to U.S. Geological Survey guidelines with regard to the reporting of significant figures. Procedures used to collect, process, and analyze the samples for which data are listed in the appendices and in tables 2 and 4-10 do not necessarily conform to U.S. Geological Survey protocols and guidelines.

Description of Study Area

The NTS lies in the Basin and Range physiographic province. The study area is in the northwest part of NTS, in eastern Pahute Mesa. The area consists of broad mesas and volcanic ranges where pre-shot topography was flat, reflecting the nearly flat-lying ashfall tuffs that cover the area around PM-2. Altitudes range from less than 1,600 m to more than 2,200 m above sea level in Areas 19 and 20. Land-surface altitude at well PM-2 is 1,703.5 m. The well is located at Nevada State Plane coordinates N. 944,582 and E. 528,655. Mean annual precipitation on eastern

·

• 7

4 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

252

1

N 20 20

Figure 3. Photograph of well PM-2 in 1993. Photograph by G.L. Otto, U.S. Geological Survey.

Pahute Mesa is variable, primarily due to altitude, and ranges from 20.3 to 30.5 cm (Winograd and Thordarson, 1975, p. C6).

Geohydrologic Setting

On NTS, surface-water runoff usually occurs during March and April following spring snowmelt, and during July and August following infrequent but intense thunderstorms. In the eastern areas of NTS, surface water flows into playas (dry lake beds) in Yucca and Frenchman Flats. In the northwest part of NTS near well PM-2 (Areas 19 and 20), water may run off beyond the NTS boundaries onto NAFR. The southern and western parts of NTS also may channel waters off site toward Death Valley.

The NTS is in a geohydrologically complex area where alluvium of Quaternary age overlies volcanic rock of Tertiary age and complexly fractured clastic and carbonate rocks of Paleozoic and Precambrian age. The geohydrologic system consists of a valley-fill aquifer, the volcanic tuffs and lava flows that include several aquifers and confining units, and the carbonate aquifer and clastic confining units. Perched zones are common throughout the NTS (Laczniak and others, 1996).

Geology

The NTS is in a structurally complex part of the southern Basin and Range physiographic province. The eastern part of Pahute Mesa (Areas 19 and 20) is part of the Southwest Nevada Volcanic Field. Well PM-2 is situated in a volcanic province of Tertiary age where ash-flow and ash-fall tuffs and rhyolitic lava flows more than 4,171 m thick were erupted from two calderas (fig. 2), the Area 20 and Grouse Canyon calderas, which together form the Silent Canyon caldera complex (Blankennagel and Weir, 1973, p. B3). Much of the area is covered by younger ash-flow and ash-fall tuff erupted from calderas to the south and west. Distribution of geologic units is extremely variable due to proximity to calderas, pre-depositional topography, and post-depositional faulting. The well penetrates a suite of volcanic rock-tuffs, rhyolites and lavas—overlying porphyritic granodiorite (table 1).

Ground Water

Ground water beneath NTS is part of the Death Valley ground-water flow system, which consists of four subbasins: Oasis Valley, Ash Meadows, Alkali Flat-Furnace Creek Ranch, and Death Valley (fig. 1). Regional ground-water flow beneath NTS is in three subbasins—Oasis Valley and Ash Meadows subbasins in Nevada and the Alkali Flat-Furnace Creek Ranch subbasin in Nevada and California. Well PM-2 is within the Oasis Valley flow system. Depth to ground water may range from about 156 m below land surface in Frenchman Flat to more than 600 m below land surface on Pahute Mesa (Winograd and Thordarson, 1975, p. C47).

The water-level altitude throughout the volcanic sequences within the Silent Canyon caldera complex on Pahute Mesa is from 1,268 m to 1,428 m above sea level (594 m to 716 m below land surface), according to Blankennagel and Weir (1973, pl. 1). Northwest of the caldera, near well PM-2, Blankennagel and Weir (1973, pl. 1) indicate that the altitude of the water table is about 1,432 m (260 m below land surface). In Area 20, thick layers of lower permeability ash-flow and ash-fall tuffs separate thinner and less extensive rhyolitic lava flows of higher permeability. Ground water moves primarily through interconnected fractures within the units. In general, zeolitized and nonwelded tuffs are less permeable and act as confining units, while the welded ash-flow tuffs and rhyoliticlava flows form aquifers (Blankennagel and Weir, 1973, p. B7). Water-level contours in eastern Pahute

Mesa are shown in figure 5 as reported by Blankennagel and Weir (1973, pl. 1). A recent water-level contour map by O'Hagan and Laczniak (1996) shows water levels in eastern Pahute Mesa that closely approximate those of Blankennagel and Weir (1973, pl. 1). Figure 5 indicates that well PM-2 lies upgradient from the Schooner event (assuming that ground-water flow is perpendicular to the contours shown on figure 5 and that ground water flows in the two dimensions shown on the map). A more thorough discussion on hydrogeologic units, ground-water occurrence, and groundwater flow is given by Laczniak and others (1996).

The Schooner Event

The only test in the immediate area of well PM-2 was the Schooner event (U-20u), detonated approximately 270 m southeast of well PM-2 (fig. 2). The next closest test was more than 4 km east-southeast of well PM-2. Schooner was a 30-kiloton cratering demonstration in December 1968 detonated at a depth of 108.2 m (Henry, 1969, p. 1). The crater created by the Schooner event is about 129.8 m in radius and 63.4 m in depth. The continuous-ejecta limit (the outermost limit of continuous deposits of earth materials thrown out and away from the explosion) was asymmetrical

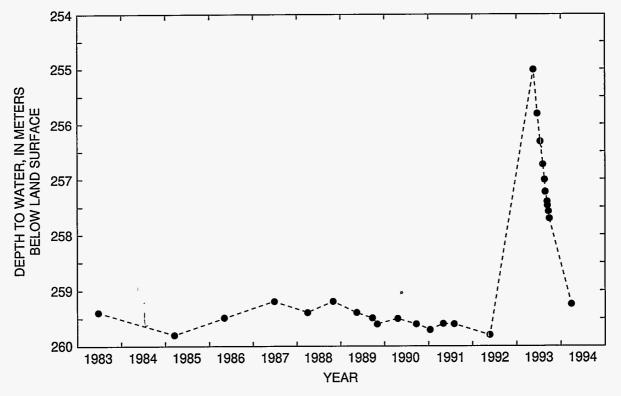


Figure 4. Measurements of depth to water in well PM-2, 1983-94.

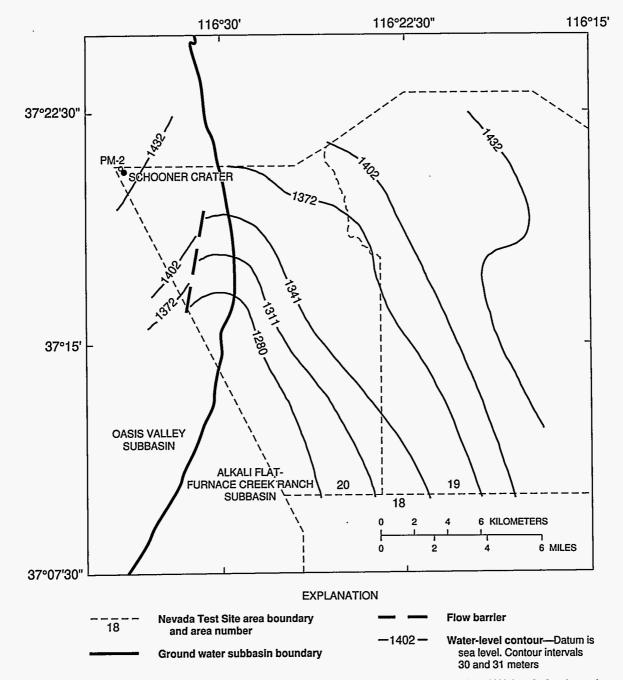


Figure 5. Water-level contours in eastern Pahute Mesa (modified from Blankennagel and Weir, 1973, where the contour interval is 100 feet).

(fig. 6), ranging from about 518 m to 823 m. The maximum extent ejected earth materials could be mapped exceeded 1,830 m (Henny, 1969, p. 53). Well PM-2 was completed in 1964 and buried beneath approximately 3 m of ejecta from the Schooner event in 1968. The crater and ejecta are shown in figure 6, which is an aerial photograph taken in 1989 by EG&G Energy Measurements, Inc. (EG&G). Also evident on the photograph is the access road to Schooner and well PM-2, north and west of the crater, clearly within the ejecta pattern (L. Tinney, EG&G, written commun., 1994). Additional information available from EG&G concerning the Schooner event includes enhanced Landsat imagery.

LLNL has compiled the radiochemical sources for the Schooner event (G.J. Nimz, LLNL, written commun., 1994). Because Schooner was a cratering event, less-than-typical amounts of fission products

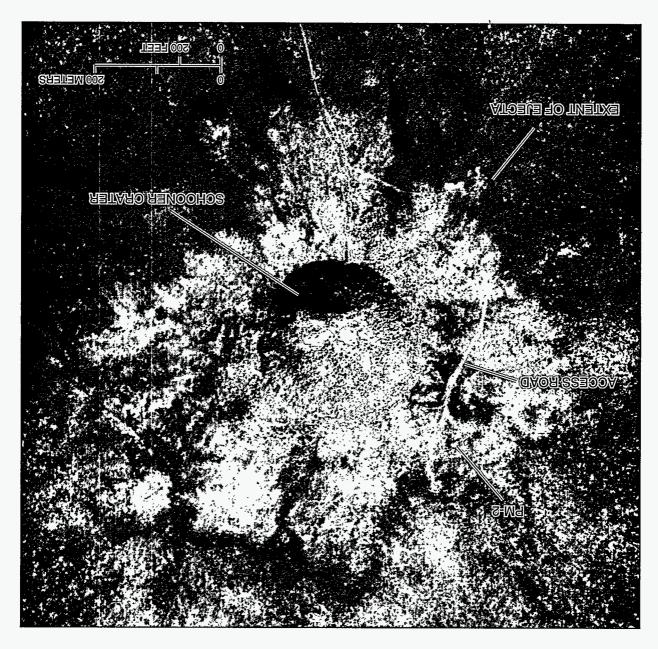


Figure 6. Aerial photograph of Schooner crater in 1989, showing extent of ejecta and location of well PM-2.

Photograph by EG&G Energy Measurements, Inc.

.(49 .q testing (EG&G Energy Measurements, Inc., 1972, the nearby NTS cratering event (Schooner) and other the NTS boundary exceeded 200 µR/hr as a result of NTS ranged from 20 to 30 µR/hr. Exposure rates near Schooner area. Background exposure rates north of

to 100,000 counts per second, of which 1,200 to had a maximum anthropogenic gross count of 32,000 plume north of Schooner and on NAFR. The plume testing at NTS. The survey revealed a radioactive 1992 to map possible contamination resulting from An aerial radiological study was made in October

> An aerial radiological survey of NTS and surthe source of contaminated water at well PM-2. fission products may help to identify Schooner as soil and rock. A high ratio of activation products to activation products were produced in the surrounding were produced. At the same time, large amounts of

> (µR/hr). Exposure rates exceeded 200 µR/hr in the area ranged from 20 to 25 microRoentgens per hour NTS. Background exposure rates in the Pahute Mesa exposure-rate contours in selected areas in and around The primary objective of the survey was to determine rounding areas was made in 1970 and 1971 by EG&G.

2,600 counts per second are due to 241 Am, a betadecay product of 241 Pu. 241 Am count rate can be converted to surface activity, in units of becquerel per square meter (Bq/m²), and to average activity in the top 1 cm, in units of becquerel per gram (Bq/g). The maximum anthropogenic count rate of 2,600 counts per second equates to a surface activity of 173.9 Bq/m² and an average activity in the top 1 cm of 11.8 Bq/g (EG&G Energy Measurements, Inc., 1992, p. 9).

The ²⁴¹Am activities of a material can be multiplied by the Pu-to-Am ratio of the material to obtain an estimate of Pu activity. For Schooner fallout, the Pu-to-Am ratio is approximately 0.7; therefore, the maximum surface activity of Pu in the top 1 cm is 8.3 Bq/g (EG&G Energy Measurements, Inc., 1992, p. 8).

Previous Studies

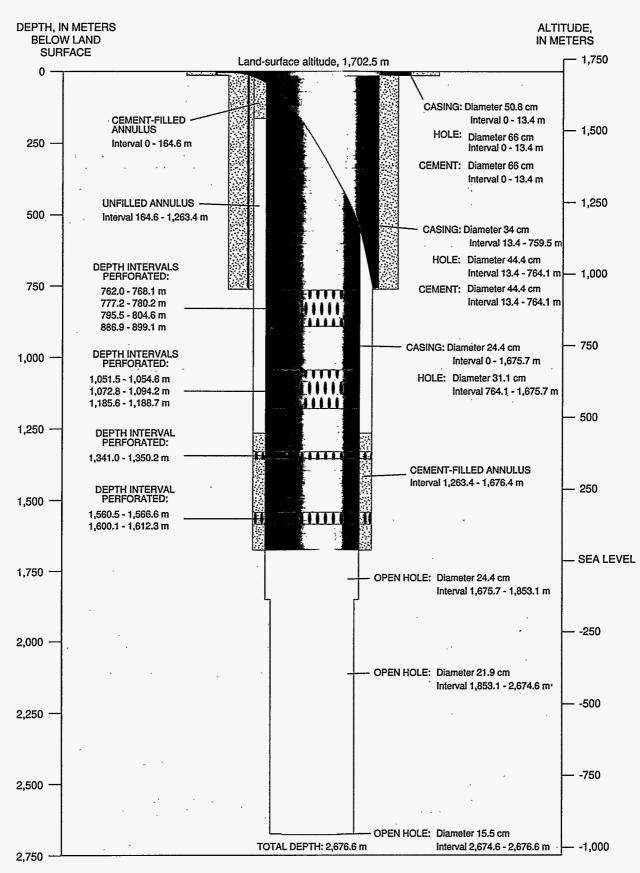
Several U.S. Geological Survey reports detail activities concerning well PM-2. The lithology of rocks penetrated by well PM-2 is discussed by Hasler and Byers (1965). Well history, drilling data, and hydraulic testing at well PM-2 are discussed by Blankennagel and others (1964) and Blankennagel and Weir (1966). Geologic data at satellite holes for Schooner are discussed by Purtymun and others (1969). Other reports (Thordarson and others, 1967; Orkild, 1969; Orkild and Jenkins, 1970) summarize activities and data at the well PM-2 site. An Air Force report by Henny (1969) details observations concerning the Schooner event.

Acknowledgments

The authors thank the participating agencies associated with the U.S. Department of Energy HRMP: Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Desert Research Institute, and Reynolds Electrical and Engineering Co. The authors express appreciation to Richard H. Pearl, Stephen H. Leedom, and Douglas W. Duncan of the U.S. Department of Energy for support during the compilation of the data. Special thanks to the HRMP members for the submission of materials for use in this report: Gregory J. Nimz, Lawrence Livermore National Laboratory, provided radionuclide and chemical analysis and radiochemical source terms for Schooner; Joseph L. Thompson, Los Alamos National Laboratory, provided water-quality-sampling data from well PM-2 and research into ejected materials at well PM-2; Paul R. Seaber and David Gillespie, Desert Research Institute,

provided maps and assorted information; and Fred Ferate, Reynolds Electrical and Engineering Company, provided soil sample information and radionuclide and chemical analysis. Water-quality samples were analyzed by Terence M. Grady, Environmental Monitoring System Laboratory, U.S. Environmental Protection Agency, Las Vegas, Nev. Raytheon Services Nevada provided information on hole histories and geophysical logs. Larry Tinney, EG&G Energy Measurements, Inc., provided maps, aerial photographs, and Landsat images of Pahute Mesa; and J.A. Zamudio, EG&G, provided Landsat analysis.

SUMMARY OF DATA ON WELL PM-2


Summarized below are the construction and geophysical logging histories of well PM-2. Most of this information was obtained from records maintained by Raytheon Services Nevada (RSN). A report by Gillespie (1994) examined much of the available historical record on well PM-2 as part of the joint HRMP investigation into the radiological contamination of well PM-2. The summary description of the geologic and hydrologic properties of the units penetrated by well PM-2, as presented below, is from previously published reports. The soil chemistry around the wellhead and the water quality of samples from the well are characterized below from samples collected and analyzed as part of the joint HRMP investigation.

Well Construction

Well PM-2 was constructed between May 20 and October 13, 1964, and completed as an open-hole well with a vertical depth of 2,676.6 m below land surface. The well was cased to a depth of 1,675.7 m. Gun-type perforations in the casing were added in May 1966 at depths between 762.0 and 1,612.3 m. Well-construction details of well PM-2 are shown in figure 7. Appendix A presents RSN hole-history data. The data include daily drilling activities, a hole-deviation survey, core sampling, and cementing records. The core samples obtained during drilling are archived at NTS in the USGS Core Library.

Well casings with outside diameters of 50.8 cm, 34.0 cm, and 24.4 cm were used in the construction of well PM-2 (fig. 7). All the casings were strung to land surface. The surface casing of 50.8-cm diameter was installed to a depth of 13.4 m. The 34.0-cm diameter casing was installed to a depth of 759.5 m. The casing

9

of 24.4-cm diameter was installed to a depth of 1,675.7 m. Below the bottom of the 24.4-cm casing, from 1,675.7 to 2,676.6 m, well PM-2 was left as an open hole.

The annular spaces of the 50.8-cm and the 34.0cm casings were cemented throughout the length of their casings. The annular space of only the uppermost part and the lowermost part of the 24.4-cm diameter casing was cemented. The annular space of the 24.4cm casing was left open from 164.6 m to 1,263.4 m.

Filling, bridging, and caving of the drill hole were the main problems during the construction of PM-2. These problems first began to slow the drilling at about 1.265 m and continued to cause delays until drilling reached a depth of about 1,965 m. Of the 146 days the drill rig was at the site, 32 days were lost in washing and cleaning out bridges and fills in the hole and in attempts to prevent caving. One unsuccessful attempt involved setting packers between 1,664.2 m and 1,761.7 m and injecting 6,359.3 L of an "AM9" solution. AM-9 is an acrylamide, which polymerizes under the influence of ammonium persulfate and K ions (J.L. Thompson, LANL, written commun., 1994). However, replacing the circulation medium of the drill hole from an air-and-water mist to a bentonite-based mud mixed with diesel oil allowed drilling to continue from 1,965 m to the bottom of the hole at 2,676.6 m. To prevent further caving after total depth was reached, the drilling mud was left in the hole.

Log Characteristics

RSN has about 70 geophysical logs on well PM-2. Information on the type of logs available, dates the logs were run, and the logged interval is presented in Appendix B. Most of the logs (43) were made during June-October 1964 as an aide in the drilling of well PM-2.

In April 1966, logs were run in preparation for the gun perforation of the well PM-2 casing. In November 1968, casing-collar-locator, caliper, and fluid-density logs were run prior to the December 1968 Schooner event. In June 1969, similar logs also were run to investigate the possible effect of the Schooner event on well PM-2. On June 20, 1983, a depth-check log was run and the USGS began periodic depth-to-water measurements in well PM-2. In October 1983, several geophysical logs were completed.

Caliper and casing collar locator logs made in November 1968 and in June 1969, before and after the Schooner event in December 1968, were compared by Gillespie (1994). Both sets of logs were completed in the interval from 0 to 304.8 m. Five possible breaks in the casing were identified at depths of 19.5, 37.5, 62.5, 144, and 151.5 m.

On July 11, 1994, a video camera was lowered into well PM-2 by LLNL to examine the casing for breaks. The camera was slowly run from the surface to the water table, passed the depths identified as suspect from the logs. No ruptures or tears in the casing were found. The video log of the well showed no evidence that ground water could have entered the well bore above the water level through casing breaks.

Geologic Characteristics

Original lithology of well PM-2 is characterized by Hasler and Byers (1965). Geologic data for Schooner observation holes are discussed by Purtymun and others (1969). More recently, geologic nomenclature has been updated by Warren and others (1989). A summary of the geologic groups, units, lithologies, and depths at well PM-2 as described by Warren and others (1989) is in table 1. Results from cores that were analyzed immediately following drilling at well PM-2 show slightly welded tuffs down to 825.05 m with no fractures. Dacitic lavas and argillized lithic-rich tuffs between 874.8 m and 1,268 m were slightly to moderately fractured. The lava flows between 1,268 m and 2,520.7 m were moderately to highly fractured. The intrusive contact zone from 2,520.7 m to 2,554.1 m was moderately fractured whereas the granodiorite porphyry from 2,554.1 m to 2,676.8 m were extremely fractured (Hasler and Byers, 1965, p. 4).

Soil Characteristics

Soil samples around the wellhead of well PM-2 were obtained on November 19, 1993, by REECo's Ramatrol Division for analysis by REECo Analytical Services Division. Summary results of soil moisture, ³H, and gamma spectroscopy on the soil around the wellhead are shown in table 2. A copy of REECo's analytical report on the soil samples is provided in Appendix C. Locations of six soil-sampling points around well PM-2 and the field descriptions of each site are in figure 8. Soil samples were obtained 5 or 5.6 m from the wellhead at the surface and from a depth of 30 cm at each site. Some of the samples represented undisturbed pre-event soil (virgin soil) and some samples represented ejecta from the Schooner event (throwout; F.D. Ferate, REECo Analytical Services, written

Depth	Stratigrap	hic unit			
(meters below land surface)	Group	Member	- Lithology		
0-15.2	Thirsty Canyon Group	Trail Ridge Tuff	Densely welded ash-flow tuff		
15.2-91.4	do.	Pahute Mesa Tuff	Partially welded and nonwelded ash-flow tuff		
91.4-109.7	do.	Rocket Wash Tuff	Densely welded ash-flow tuff		
109.7-164.6	Belted Range Group	Grouse Canyon Tuff	Densely welded ash-flow tuff		
164.6-298.7	Tunnel Formation	Tunnel 3 member: Beds3bc	Bedded tuff: tuffaceous sandstone and interbedded nonwelded ash-flow tuff		
298.7-402.3	Volcanics of Big Dome	Tub Spring Tuff	Nonwelded ash-flow tuff		
402.3-451.1	Older volcanics	Rhyolite of Quartz Mountain	Zeolitized-bedded tuff		
451.1-719.3	do.	Redrock Valley Tuff	Zeolitized nonwelded tuff		
719.3-755.9	do.	Volcanics of Mount Helen: dacite-andesite	Dacite-andesite		
755.9-874.8	do.	Upper "Fraction" Tuff	Zeoltized nonwelded tuff		
874.8-1,033.3	do.	Volcanics of Mount Helen: dacite-andesite	Dacitic flow breccias and lava		
1,033.3-1,268.0	do.	Volcanics of Mount Helen: Tuff of Wilsons Camp	Nonwelded zeolitized lithic tuffs, dacitic lava and flow breccias; zeolitized lithic nonwelded tuff; bedded tuffaceous mudstone		
1,268.0-2,554.1	do.	Volcanics of Mount Helen: dacite-andesite	Dacitic lava flows; bedded tuff (zeolitized tuffaceous sandstone and mudstone); rhyodacitic lava flows; zeolitized nonwelded tuff; altered dacitic lava flow; silicified volcanic rock near basal contact		
2,554.1-2,633.3	Brecciated aplite and granodiorite				
2,633.3-2,676.8	Granodiorite				

 Table 1. Summary of lithologic log of well PM-2 (modified by Warren and others, 1989; R.G. Warren, Los Alamos National Laboratory, written commun., 1991)

commun., 1994). The soil around the wellhead was moved and graded after the Schooner test to uncover the well and to re-establish a dirt road to the well. As a result of these activities, the soil samples probably are a mix of undisturbed soil and ejecta material (F.D. Ferate, REECo Analytical Services, written commun., 1994).

Soil moisture was analyzed by measuring the mass of water in 10 g of each soil sample to determine the relation of the ³H concentrations in the soil to ³H concentrations in water (Appendix C). The ³H concentration of the soil was determined by multiplying the ³H concentration of the extracted water by the ratio of the soil-moisture mass to soil mass (F.D. Ferate, REECo, written commun., 1994).

Soil moistures ranged from 0.11 to 0.58 g of water per 10 g of soil, except for the sample at point C at 30 cm. The soil moisture of this sample was 2.5 g of water per 10 g of soil. The field description of this sample indicates that the sample was from the middle of the road leading to well PM-2 and that a layer of caliche was directly above the sample. The sample has a different physical appearance than all other samples. It is a fine, whitish, chalky-looking powder of low density and may be a powdered caliche (F.D. Ferate, REECo, written commun., 1994).

In general, results of ³H analysis indicated a higher level of ³H activity at a depth of 30 cm than samples from the surface (table 2). ³H activity in the soil moisture ranged from 1,038 Bq/L to 33,105 Bq/L. Water samples from depth at well PM-2 had similar values. ³H activities in the soil ranged from 0.019 to 1.62 Bq/g soil (table 2).

Gamma spectroscopy also was done on the samples by REECo Analytical Services for the detection of radionuclides and results are in Appendix C. Samples were normalized to weight and placed on the end of a high-purity Ge detector in a 500-mL bottle and counted for 20 minutes. Detection limits are from 0.004 to 0.001 Bq/g. Gamma spectroscopy of the soil samples identified six nonnaturally occurring radionuclides (²⁴¹Am, ⁶⁰Co, ¹³⁷Cs, ¹⁵⁰Eu ¹⁵²Eu, ¹⁵⁴Eu) and four naturally occurring radionuclides (⁴⁰Kr, ²²⁶Ra, ²²⁸Th, ²³²Th). The gamma spectrum of each soil sample had numerous unidentified peaks with high counting errors (Appendix C).

Table 2. Soil moisture, tritium, and gamma spectroscopy analysis of soil samples around PM-2, November 19, 1993

[Sampling and analysis by Reynolds Electrical & Engineering Company. Abbreviations: Bq/g soil, bequerel per gram of soil; Bq/L, becquerel per liter; cm, centimeter; n.d.; not detected]

	Soil moisture				Nonnaturally occurring					- Sum of	Naturally occurring				Sum of
Sample point	(grams water per 10 grams soil)	Tritium in soil moisture (Bq/L)	Tritium (Bq/g soil)	Ameri- cium- 241 (Bq/g soil)	Cobalt-60 (Bq/g soil)	Cesium-137 (Bq/g soil)	Europium- 150 (Bq/g soil)	Europium- 152 (Bq/g soil)	Europium- 154 (Bq/g soil)	nonnatural radionu- clides (Bq/g soil)	Potas- sium-40 (Bq/g soil)	Radium- 226 (Bq/g soil)	Thorium- 228 (Bq/g soil)	Thorium- 232 (Bq/g soil)	natural radionu- clides (Bq/g soil)
A-Surface	0.26	1,038	0.027	0.273	0.087	0.030	0.023	0.261	0.229	0.903	1.37	0.038	0.088	0.078	1.574
A-30 cm	.49	2,102	.103	n.d.	n.d.	.004	n.d.	n.d.	n.d.	.004	1.01	.053	.091	.081	1.235
B-Surface	.12	1,833	.022	.633	.166	.039	.045	.544	.462	1.889	1.55	.032	.084	.083	1.749
B-30 cm.	.13	19,385	.252	.023	.009	.043	n.d.	.024	.021	.120	1.55	.034	.092	.074	1.750
C-Surface	.11	21,727	.239	.548	.139	.033	.037	.496	.407	1.660	1.36	.043	.092	.086	1.581
C-30 cm	2.5	3,524	.881	n.d.	n.d.	.002	n.d.	n.d.	n.d.	.002	.056	.006	.010	.010	.082
D-Surface	.19	33,105	.629	.336	.104	.030	.027	.312	.266	1.075	1.64	.032	.087	.078	1.837
D-30 cm	.17	1,118	.019	.142	.044	.028	.012	.128	.110	.464	. 1.56	.031	.080	.077	1.748
E-Surface	.29	6,690	.194	.514	.094	.039	.026	.370	.288	1.331	1.38	.033	.077	.067	1.557
E-30 cm	.58	27,931	1.62	n.d.	.003	.017	n.d.	.009	.009	.038	.918	.039	.077	.067	1.101
F-Surface	.18	7,111	.128	.740	.230	.048	.067	.773	.640	2.498	1.36	.038	.065	.079	1.542
F-30 cm	.45	4,267	.192	.022	.006	.010	n.d.	.017	.016	.071	.966	.070	.079	.067	1.182
Surface sample average	0.192	11,917	0.206	0.507	0.137	0.036	0.038	0.459	0.382	1.559	1.44	0.036	0.082	0.078	1.64
30-cm sample average	¹ 0.364	9,721	0.511	0.062	0.016	0.017	0.012	0.044	0.039	0.116	1.01	0.039	0.072	0.063	1.183

1.

、*

¹ Average value does not include sample at C-30 cm.

13

.

Figure 8. Soil-sampling sites adjacent to well PM-2 (from REECo field notes).

Results from previous soil-profile studies at other NTS areas showed that generally more than 95 percent of Am remained in the top 5 cm of surface soil after 10-20 years of residence time in undisturbed areas (Romney and others, 1987). At each of the six soil-sample sites near well PM-2, 241 Am concentration was greater in soil collected from the surface than from 30 cm (table 2). 241 Am was not detected in three of the soil samples at 30 cm, while the ratio of 241 Am at surface to 241 Am at 30 cm in the other three samples ranged from 2.36 to 33.6.

Activities of the six nonnaturally occurring radionuclides in the 12 soil samples ranged from not detected to 0.773 Bq/g of soil (table 2). The sum of the radioactivity of these six radionuclides at a given site ranged from 0.002 to 2.498 Bq/g of soil. At each of the six sites, the total activity of the surface samples was at least an order of magnitude greater than samples at 30 cm. At sample A at 30 cm and sample C at 30 cm, only trace amounts of 137 Cs were found.

The four naturally occurring radionuclides were found in all 12 samples, ranging in value from 0.006 to 1.64 Bq/g of soil (table 2). The total activity of these four radionuclides at a given site ranged from 0.082 to 1.837 Bq/g of soil. The radionuclides were nearly equally distributed between the surface samples and samples at 30 cm for a given site, except at site C. The surface sample at site C had more than an order of

magnitude greater activity of natural radionuclides than the 30-cm sample. This is consistent with the interpretation that this sample is caliche (F.D. Ferate, REECo Analytical Services, written commun., 1994).

Relative to underground tests, cratering events, such as Schooner, typically produce more neutronactivation products than fission products. Of the six nonnaturally occurring isotopes, four are activation products (⁶⁰Co, ¹⁵⁰Eu, ¹⁵²Eu, ¹⁵⁴Eu) and only ¹³⁷Cs is a fission product. ²⁴¹Am is a decay product of ²⁴¹Pu, a common nuclear fuel (G.J. Nimz, LLNL, written commun., 1994).

Hydrologic Characteristics

Hydraulic testing at well PM-2 in July 1964 is summarized in Appendix D. A detailed account of hydrologic testing at well PM-2 is given by Blankennagel and others (1964). Typically, hydraulic testing consisted of a suite of geophysical logs being run, followed by pumping tests, then a series of injection or swabbing tests. Injection tests indicated a low relative specific capacity for water flow. A swabbing test was run with the hole open from 759.5 m to 1,214.0 m (Blankennagel and others, 1964, p. 24). The water level was lowered 274.3 m below the static water level of approximately 394.4 m with little indication of water inflow. Recovery over the next $17 \frac{1}{2}$ hours was 13.7 m.

Water-level measurements have been sporadic over the years and are available during drilling, testing, and logging activities at well PM-2. In 1969, waterlevel measurements were discontinued following the Schooner event, until 1983, when the U.S. Geological Survey began measurements on an intermittent basis (table 3). The water level had remained almost constant from 1983 through 1993 varying less than 0.65 m. In May 1993, a water-level measurement indicated that levels in the well had risen 4.77 m (fig. 4). Subsequent measurements show water levels declining to previous levels.

Water-Quality Analyses

Water samples from the deep wells and holes at NTS are routinely collected with a wireline point sampler. The stainless-steel sampler is about 1.52 m long and 4.1 cm in diameter, and has a capacity of 2.2 L. The sample intake ports are about 1 m below a water-level sensor attached to the sampler. The ports are closed while the device is lowered and raised in the water column and are opened when the desired depth is reached. Prior to collecting a water sample, the standard U.S. Geological Survey procedure is to rinse the sampler with a 0.5 percent solution of hydrochloric acid, followed by rinsing with distilled water. Problems associated with collecting water samples with a point sampler include concerns about the representativeness of a sample of water from inside the casing to that of water in the aquifer; time delay in bringing a water sample to the surface; and mixing of the water column caused by lowering and raising the sampler.

Field Water Quality, Tritium, and Krypton

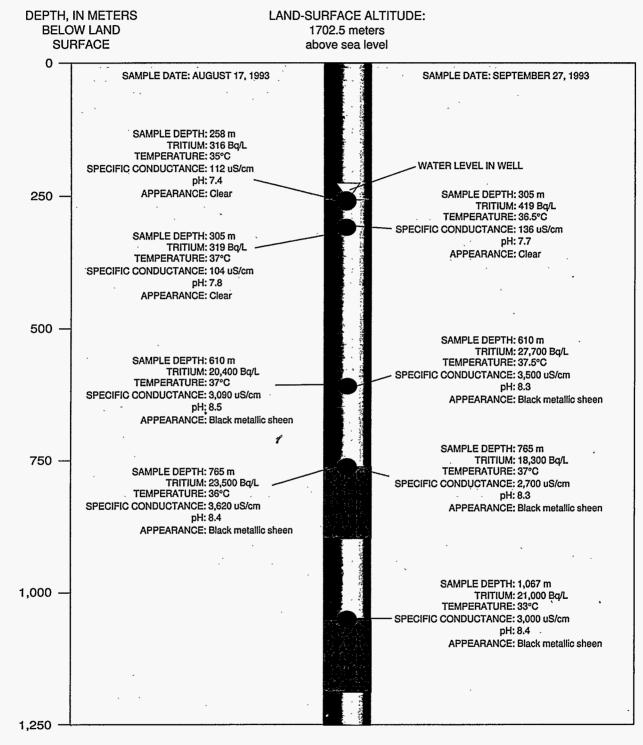

Four water samples were collected on August 17, 1993, from well PM-2 as part of an investigation of the unexpected rise in the water level. Samples were collected with a point sampler at 258 m (water surface). 305 m, 610 m, and 765 m below land surface. The first open interval in the well casing is between 762 and 768 m. After the samples were brought up from depth, the temperature, specific conductance, and pH were determined in the field as soon as possible. ³H analysis were done later in the laboratory by the EMSL. No ³H analysis from well PM-2 prior to 1993 could be located. Field water-quality and ³H-analysis results are shown in figure 9. ³H levels in the two deepest samples (20,400 Bg/L at 610 m and 23,500 Bg/L at 765 m) exceeded proposed USEPA limits for ³H of 740 Ba/L by almost two orders of magnitude. Four additional samples at depths below land surface of 305 m, 610 m, 765 m, and 1,067 m were obtained from well PM-2 on September 27, 1993 (fig. 9), to confirm the elevated ³H levels.

 Table 3. Summary of water-level measurements at well

 PM-2, 1983-94

Date	Water level (meters below land surface)	Date	Water level (meters below land surface)
06-20-83	259.38	09-30-91	259.67
03-13-85	259.85	05-20-92	259.74
05-01-86	259.53	05-20-93	254.97
06-16-87	259.20	06-18-93	255.86
03-13-88	259.44	07-12-93	256.30
10-17-88	259.22	08-02-93	256.72
05-09-89	259.43	08-17-93	257.01
09-20-89	259.50	08-24-93	257.22
10-27-89	259.56	09-07-93	257.41
04-11-90	259.48	09-14-93	257.47
09-13-90	259.59	09-23-93	257.58
01-15-91	259.68	09-27-93	257.70
04-24-91	259.56	03-28-94	259.24
07-25-91	259.61		

SUMMARY OF DATA ON WELL PM-2 15

Figure 9. Water-quality data collected (by U.S. Geological Survey) at well PM-2, August 17, 1993, and September 27, 1993. Abbreviations: Bq/L, becquerel per liter; °C, degree Celsius; m, meter; µS/cm, microsiemens per centimeter.

The water samples from 258 m and 305 m were generally clear, while the deeper samples were black in color with a somewhat metallic sheen. These deeper samples also rapidly effervesced when poured out of the sampler, which could affect the laboratory and field measurements if the samples were changing chemically to a new equilibrium. The pH, specific conductance, and ³H activity of the water samples at a depth of 610 m and below were about an order of magnitude greater than that of the samples at depths of 258 m and 305 m (fig. 9). The low specific conductance of these shallower samples (fig. 9) suggests that these waters could be classified as fresh (dissolved-solids concentration less than 1,000 mg/L). The ³H activity of the samples at 258 m and 305 m (table 4) was almost an order of magnitude less than the activity of the soilmoisture samples (table 2) taken around well PM-2.

The confirmation of the elevated ³H levels in the well led to additional sampling by LLNL and LANL during November 30-December 1, 1993, and May 3-4, 1994. Samples were collected using point samplers stacked in tandem. The samplers were rinsed with deionized water, then alcohol, and evacuated prior to being lowered into the hole. Samples were split between LANL, LLNL, REECo, and the State of Nevada (G.J. Nimz, LLNL, written commun., 1994). LANL analyzed the sample in detail (which required a large volume of sample water) for ³H, ⁸⁵Kr, and gamma spectroscopy. LLNL was tasked with analysis for dissolved inorganic constituents, trace metals, volatile and semivolatile organic compounds, gross alpha and beta, and various radionuclides (¹⁴C, ³⁶Cl, ³He, ⁴He, ²³⁸Pu, ²³⁹Pu, ⁹⁰Sr) in addition to ³H analysis and gamma spectroscopy.

³H analyses from LANL (J.L. Thompson, LANL, written commun., 1994) and LLNL (G.J. Nimz, LLNL, written commun., 1994) are shown in table 4, along with results from previous analyses by EMSL (T.M. Grady, EMSL, written commun., 1993) and REECo (F.D. Ferate, REECo, written commun., 1994). The ³H activity in water samples taken from 305 m and above was about two orders of magnitude less than water samples taken from 610 m and below. The average activity of ³H from water samples from 258 m and 305 m was 515 Bg/L. The average activity of 3 H from 610 m and greater depths was 23,200 Bq/L. The variability of the ³H analyses for a given depth may be due to movement into or out of the well or more likely a function of the mixing of the water column within the borehole as the sampling devices were lowered and raised. The highest ³H values appear at 610 m, which is about 155 m above the first known open interval in the well. Further investigation might clarify whether contamination entered the casing about 600 m below land surface. These ³H values, however, were only slightly higher than values found at greater depth in the well (table 4).

Table 4. Tritium analysis of water samples from PM-2, 1993-94

[Tritium values in becquerels per liter. Abbreviations: EMSL, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; REECo, Reynolds Electrical Electrical & Engineering Co., Inc., Analytical Services; F.D., field data; L.D., laboratory data; LANL, Los Alamos National Laboratory; LLNL, Lawrence Livermore National Laboratory; n.d., not detected; n.m., not measured; n.s., not sampled]

	B ()	Sample depth, below land surface							
Analyzing laboratory	Date(s) sampled	258 meters	305 meters	610 meters	765 meters	823 meters	915 meters	1,067 meters	
EMSL REECo	08/17/93	316 331	319 293	20,400 20,700	23,500 23,900	n.s.	n.s.	n.s.	
EMSL	09/27/93	n.s.	293 419	20,700	18,300	n.s. n.s.	n.s. n.s.	n.s. ¹ 21,000	
REECo	09/27/93	n.s.	445	29,600	19,500	n.s.	n.s.	¹ 22,300	
LLNL - F.D.	11/30-12/01/93	n.s.	537	27,200	n.s.	22,000	19,600	n.s.	
LLNL - L.D.	11/30-12/01/93	n.s.	937	26,300	n.s.	22,900	21,400	n.s.	
LANL	11/30-12/01/93	n.s.	541	27,000	n.s.	25,700	n.s.	n.s.	
LLNL - F.D.	05/3-4/94	n.s.	n.d.	n.s.	n.s.	20,900	n.m.	n.s.	
LLNL - L.D.	05/3-4/94	n.s.	756	n.s.	n.s.	24,600	21,600	n.s.	
LANL	05/3-4/94	n.s.	770	n.s.	n.s.	25,100	23,300	n.s.	
AVERAGE CON	CENTRATION	324	557	25,600	21,300	23,500	21,500	21,600	

¹Possible obstruction at 1,000 meters; depth may be less than 1,067 meters.

SUMMARY OF DATA ON WELL PM-2 17

⁸⁵Kr is a fission product of nuclear testing. Results of analyses by LANL for ⁸⁵Kr (J.L. Thompson, LANL, written commun., 1994) are given in table 5. The detection limit of the procedure used for ⁸⁵Kr analysis is 0.037 Bq/L. ⁸⁵Kr activity was low in all samples. ⁸⁵Kr was below the detection limit in samples from depths of 610 m and 823 m and only slightly above the limit in a sample from 915 m. The highest activity was found in the sample from 305 m, although the second time a sample was taken from this depth the value was just above the detection limit.

Table 5. Krypton-85 analysis of water samples from wellPM-2, 1993-94

[Sampling and analysis by Los Alamos National Laboratory. Abbreviations: b.d.l., below detection limit; Bq/L, becquerels per liter; n.s., not sampled]

Detes	Sample depth, below land surface								
Dates sampled	305 meters	610 meters	823 meters	915 meters					
11/30/93- 12/01/93	0.52 Bq/L	b.d.l.	b.d.l.	n.s.					
05/03/94- 05/04/94	0.09 <u>+</u> 0.04 Bq/L	n.s.	b.d.l.	0.09 <u>+</u> 0.03 Bq/L					

Carbon-14, Chlorine-36, and Strontium-90

Results of analysis by LLNL for ¹⁴C, ³⁶Cl (both of which are activation products) and ⁹⁰Sr (a fission product) on water samples collected November 30-December 1, 1993, are presented in table 6. ¹⁴C and ³⁶Cl were within expected activity levels. All ⁹⁰Sr samples were below detectable levels.

Table 6. Analysis of carbon-14, chloride-36, andstrontium-90 in water samples from well PM-2,November 29-December 1, 1993

[Sampling and analysis by Lawrence Livermore National Laboratory. Abbreviations: b.d.l., below detection limit; Bq/L, becquerels per liter; n.s., not sampled]

Sample depth (meters below land surface	Carbon-14 (Bq/L)	Chloride-36 (Bq/L)	Strontium-90 (Bq/L)		
305	250	0.000152	b.d.l.		
610	200	0.0000222	b.d.l.		
823	100	n.s.	b.d.l.		
915	1,630	0.00002	b.d.l.		

Helium Age Dating

LLNL analyzed water samples collected at 610 and 910 m on November 29-December 1, 1993, for ³He and ⁴He. The results of the analyses are presented in table 7. ³H decays to He, and this ratio can be used as a dating tool. Analysis of the data by LLNL suggest that the water samples were about 9 years old. Limitations of the analysis include loss of He to the atmosphere, especially if the aquifer is not totally confined, contact of the sample with air during sampling, or mixing of waters with different He ratios.

Table 7. Helium-3 and helium-4 analyses used todetermine age of water samples from well PM-2,November 29-December 1, 1993

[Analysis by Lawrence Livermore National Laboratory]

Sample depth (meters below land surface)	Helium-3 atoms/L	Helium-4 atoms/L	Helium-3/ tritium age since May 1994	
610	7.86 x 10 ⁹	1.75 x 10 ¹⁴	3,348 days	
915	5.36 x 10 ⁹	1.43 x 10 ¹⁴	3,162 days	

Gamma Spectral

Both LLNL and LANL performed gamma spectral analyses on water samples collected from well PM-2 in November-December 1993 and in May 1994. Because LANL had a larger available sample size, a more sensitive gamma spectral analysis was done. In the procedure used by LLNL, a relatively small sample aliquot (0.5 L) was placed within an "uplooker" Ge detector and counted for 5 days. LLNL analyzed unfiltered samples, filtered samples, and the non-filterable residue. Complete results of LLNL analysis with the analytical detection limits are presented in Appendix E. LANL used an evaporation procedure appropriate for the larger volume (2.2 L) available to them. After evaporation, the sample residue was counted for 3,000 minutes (about 2 days) on a Ge counter. Summary analysis results from LLNL and LANL are given in table 8.

Both laboratory analyses show that the gamma radiation in well PM-2 was minor. Most of the water samples contain no gamma-emitting radionuclides. Of the three measurable radionuclides found—¹³⁷Cs, ²²⁶Ra, and ¹²⁵Sb—none had an activity greater than 3 Bq/L. Most likely, the ²²⁶Ra detected by LLNL is a natural decay from ²³⁸U (G.J. Nimz, LLNL, written commun., 1994). Confirmation of this would require an analysis of the rocks adjacent to the well for their

	Samplin	g and anal	ysis by Lawre	Sampling and analysis by Los Alamos National Laboratory					
Sample depth	Sampling of 11/29-12/01/93 Radium-226 (Bq/L)		Sampling of 05/3-4/94				Sampling of 11/29-12/01/93		Sampling of 05/3-4/94
(meters below land surface)			Radium-226 (Bq/L)		Antimony- 125 (Bq/L)	Cesium- 137 (Bq/L)	Antimony- 125 (Bq/L)	Cesium-137 (Bq/L)	Cesium-137 (Bq/L)
	Unfiltered water	10,000 m.w. filter	Unfiltered water	10,000 m.w. filter	Filtered water	Filtered water			
305	0.615	0.0667	0.123	0.0378	0.0168	0.00881	n.d.	n.d.	n.d.
610	b.d.l.	n.d.		(not	sampled)		(not sampled)		
823	0.0878	n.d.	b.d.l.	n.d.	b.d.l.	0.0349	n.d.	trace	0.01
915	b.d.l.	n.d.	b.d.l.	0.0256	b.d.l.	b.d.l.	0.02	2.4	0.096 <u>+</u> 0.054

[Abbreviations: b.d.l., below detection limit; Bq/L, becquerels per liter; n.d., not detected; m.w., molecular weight]

U concentrations, and also would require U-series analysis for well PM-2 water (G.J. Nimz, LLNL, written commun., 1994).

The detection of ¹²⁵Sb is not an uncommon occurrence near cratering events. Substantial amounts of radioactive Sb have been detected in postshot debris (J.L. Thompson, LANL, written commun., 1994). Pb used as shielding for the Schooner event was "Sb hardened." When the event was detonated, the neutron activation would produce ¹²⁵Sb. A substantial amount of Pb was used because Schooner was a cratering experiment (J.L. Thompson, LANL, written commun., 1994).

LANL also collected some of the sludge from well PM-2 at an approximate depth of 984 m. Two small cinders from the land surface, between well PM-2 and Schooner, were analyzed also. No gamma emitters were detected during laboratory analysis of the sludge; the cinders contained several becquerels of ⁶⁰Co, ¹⁵⁴ Eu, ¹⁵²Eu, ¹³⁷Cs, and ¹³³Ba, lesser amounts of ¹⁰⁸Ag, and possibly ¹⁵⁰Eu and ¹⁵⁵Eu (J.L. Thompson, LANL, written commun., 1994).

Gross Alpha and Gross Beta

Gross alpha and gross beta were analyzed by LLNL of the samples collected during November 29-December 1, 1993, and during May 3-4, 1994 (Appendix E). Water samples from depths of 305 m, 610 m, 823 m, and 915 m were analyzed. The gross alpha and beta counts of all the samples were below detection limits of about 3 Bq/L.

Plutonium

Results of the analysis by LLNL of the combined activity of 238 Pu and 239 Pu are presented in table 9. No isotopes were detected at depths of 305 and 610 m. A small amount (average activity of 0.00444 Bq/L) of the Pu isotopes were present at a depth of 915 m and smaller amounts (0.00163 Bq/L) at a depth of 823 m. The measured Pu isotopic ratios suggest Schooner as a possible source of contamination and further support the belief that contamination was washed in from the surface (G.J. Nimz, LLNL, written commun., 1994).

Table 9. Analysis of combined plutonium-238 and plutonium-239 in raw water samples from well PM-2, May 3-4, 1994

[Sampling and analysis by Lawrence Livermore National Laboratory. Abbreviations: b.d.l., below detection limit; Bq/L, Bequerels per liter]

Depth (meters)	Activity (Bq/L)	Error +2ơ		
305	<2.5E-04	b.d.l.		
823	1.63E-03	4.15E-04		
915	4.33E-03	6.85E-04		

Inorganic Constituents

During November 1993, REECo Analytical Services analyzed water collected by the USGS on September 27, 1993, from a depth of 610 m in well PM-2. Analytical results of inorganic constituents are shown in Appendix F. To obtain sufficient sample volume for analysis, the sample was diluted by a factor of 2.3, for

SUMMARY OF DATA ON WELL PM-2 19

a final volume of 1,000 mL. During the preparation of the sample for metals analysis, 100 mL of the remaining 1,000 mL sample was digested and concentrated to a final volume of 50 mL, or a concentration factor of 2.0, to obtain as close a concentration as possible to the original sample (F.D. Ferate, REECo, written commun., 1994). Al (0.13 mg/L) exceeded the USEPA secondary maximum contaminant level (SMCL) of 0.05 to 0.2 mg/L. Mn (0.11 mg/L) and Fe (2.8 mg/L) also exceeded the SMCL's of 0.05 and 0.3 mg/L, respectively (U.S. Environmental Protection Agency, 1996).

LLNL analyzed for inorganic constituents in water samples collected from well PM-2 during November 29-December 1, 1993. The results of the analyses are presented in Appendix E. Except for Na, concentrations of constituents listed in Appendix E were relatively low. Five of the constituents (Al, B, Li, Mg, P) were present in concentrations of less than 1 mg/L. Six other constituents (Ca, Cl, Fe, K, S, Si) were present in concentrations of less than 20 mg/L in all the samples collected. Al exceeded USEPA SMCL (0.05-0.2 mg/L) at 915 m (0.14 mg/L). Fe also exceeded the SMCL (0.3 mg/L) at 610 m (1.29 mg/L), 823 m (1.22 mg/L), and 915 m (2.40 mg/L).

The concentrations of B, Fe, K, Na, Si and S more than doubled from the 305-m sample to the 610-m sample. Na increased in concentration from 26 mg/L in the shallowest sample to more than 1,000 mg/L in all the deeper samples. Differences in the concentrations of these six constituents in the samples taken at depths of 610 m, 823 m, and 915 m, were slight.

The largest increase in most trace constituents listed in Appendix E was between the samples taken at 305 m and 610 m below land surface. Eight of the constituents (Cr, Cu, Pb, Hg, Mo, Ni, Se, U) were at least an order of magnitude higher in concentration in the 610-m sample than the 305-m sample. The largest increase in concentration is present in five constituents (Cr, Cu, Mo, Se, Sr). Mn was the only constituent found higher in concentration (by an order of magnitude) in the 305-m sample than in the 610-m sample. Co, Hg, and U were found in concentrations of less than 10 μ g/L in all the sample depths. Half of the constituents listed in Appendix E (Ba, Cr, Mn, Mo, Se, Sr, Zn) were found to exceed 100 μ g/L in at least one sample depth.

Hg and Se exceeded the USEPA MCL's (2 μ g/L and 50 μ g/L, respectively) at depths of 610 m (7.9 μ g/L and 127 μ g/L, respectively), 823 m (7.9 μ g/L and 71 μ g/L, respectively), and 915 m (9.8 μ g/L and

118.1 μ g/L respectively). Mn exceeded the USEPA SMCL (50 μ g/L) at 305 m (124.5 μ g/L) and at 915 m (74.8 μ g/L).

Organic Compounds

During November 1993, REECo Analytical Services analyzed water collected by the USGS on September 27, 1993, from a depth of 610 m in well PM-2. Analytical results of semivolatile organics are shown in Appendix F. The 450-mL sample was diluted to obtain a sufficient volume for analysis. The sample was diluted by a factor of 2.3, for a final volume of 1,000 mL. Semi-volatile organic analyses detected only one compound, bis (2-ethylhexyl) phthalate. The phthalate detected may be due to contamination during the extensive handling of this sample (F.D. Ferate, REECo, written commun, 1994).

LLNL also analyzed for organic compounds in water samples collected from well PM-2 during November 29-December 1, 1993 (table 10). Samples for volatile and semivolatile organic compounds exceeded LLNL's recommended holding times, and results may not be representative of samples analyzed within recommended holding times. Low concentrations (less than 200 μ g/L) of nine organic compounds were detected and no compounds were found in the water sample from 610 m. The only compound found in concentration greater than 100 μ g/L was 4methylphenol at depths of 823 m and 915 m. The total concentration of organic compounds did not exceed 300 μ g/L in any sample.

Two compounds (1,1,2-trichloroethane, dimethyl ether) were found in samples from depths of 305 m and 823 m. Three compounds [4-methylphenol, bis(2ethylhexyl)phthalate, di-n-butylphthalate] were found in samples from 823 m and 915 m. These three compounds were the only semivolatile compounds detected. All the other compounds are volatile.

SUMMARY

Analysis of water collected during August and September 1993 from well PM-2, on Pahute Mesa at the Nevada Test Site, indicated ³H concentrations of 21,000 Bq/L. The Schooner event (U-20u) was detonated in 1968 approximately 270 m southeast of well PM-2 at a working depth of 108.2 m. The crater created by the Schooner event was about 129.8 m in radius and 63.4 m in depth. The continuous ejecta limit was Table 10. Volatile and semivolatile organiccompounds in water samples from well PM-2,November 29-December 1, 1993

[Sampling and analysis by Lawrence Livermore National Laboratory]

Organic compound	Concentration, in micrograms per liter						
Sample depth 305 meters bel	ow land surface						
Benzene	4.2						
Chloromethane	2.0						
Methylchloride	0.3						
1,1,2-Trichloroethane	0.5						
Dimethyl ether	20.0						
Sample depth 610 meters below land surface							
No organic compounds detected							
Sample depth 823 meters below land surface							
Carbondisulfide	1.0						
1,1,2-Trichloroethane	0.5						
Dimethyl ether	20.0						
4-methylphenol	190.0						
Di-n-butylphthalate ¹	21.0						
Bis(2-ethylhexyl)phthalate ¹	35.0						
Sample depth 915 meters below land surface							
4-methylphenol	120.0						
Di-n-butylphthalate ¹	18.0						
Bis (2-ethylhexyl) phthalate ¹	25.0						

¹ Concentration estimated.

asymmetrical, ranging from about 518 m to 823 m. The maximum extent to which earth materials were ejected exceeded 1,830 m.

Geologic and hydrologic properties of the stratigraphic units are summarized from historical data. The soil around the well and water in the well were analyzed for radionuclides and water in the well was also analyzed for inorganic constituents and organic (volatile and semivolatile) substances.

Results of soil sampling indicate that radioactivity of identifiable nonnaturally occurring radionuclides (²⁴¹Am, ⁶⁰Co, ¹³⁷Cs, ¹⁵⁰Eu ¹⁵⁰Eu, ¹⁵⁴Eu) were the same order of magnitude as that of the natural radionuclides (⁴⁰Kr40, ²²⁶Ra, ²²⁸Th, ²³²Th). Gamma spectral analysis of each soil sample had numerous unidentified peaks with high counting errors.

 3 H activity in water samples taken from depths of 258 and 305 m was about two orders of magnitude less than that in water samples taken from 610 m and below. The highest 3 H values (greater than 27,000 Bq/L) were at 610 m below land surface, which is above the shal-

lowest perforations at 765 m. These values are only slightly higher than values found at greater depth in the well. The lowest ³H values (316 and 319 Bq/L) were found near the water surface in the well, at 258 m and 305 m below land surface. The analysis of ³H activity in water samples appears consistent among samples collected at different times but at the same or similar depths. The variability of the analytical results may be a function of (1) the mixing of the water column within the borehole as the sampling device was lowered and raised, or, less likely, (2) movement of water into or out of the borehole.

Concentration of inorganic constituents increased with depth. The largest increase was between 305 and 610 m below land surface. Eight of the constituents (Cr, Cu, Pb, Hg, Mo, Ni, Se, U) were at least an order of magnitude higher in concentration in the 610-m sample. The largest increase in concentration is present in five of the constituents (Cr, Cu, Mo, Se, Sr).

Low concentrations (less than 200 μ g/L) of nine organic compounds were detected. The only compound found in concentration greater than 100 μ g/L was 4-methylphenol, detected by LLNL at depths of 825 m and 915 m. The total concentration of organic compounds did not exceed 300 μ g/L in any sample.

REFERENCES CITED

- Blankennagel, R.K., and Weir, J.E., Jr., 1966, Well histories and drilling data on exploratory test holes, Pahute Mesa, Nevada Test Site: U.S. Geological Survey Special Studies I-46, 23 p.
- ——1973, Geohydrology of the eastern part of Pahute Mesa, Nevada Test Site, Nye County, Nevada: U.S. Geological Survey Professional Paper 712-B, 35 p.
- Blankennagel, R.K., Young, R.A., Cooper, J.B., and Whitcomb, H.A., 1964, Summary of ground-water data pertinent to underground construction and to water-supply development, Pahute Mesa, Nevada Test Site: U.S. Geological Survey Special Studies I-27, 39 p.

REFERENCES CITED 21

EG&G Energy Measurements, Inc., 1972, Radiological survey of the Nevada Test Site (survey period, 1970-1971): EG&G Energy Measurements, Inc., Technical Report No. L-1064, 80 p.

——1992, Off-site plutonium plume survey, Nevada Test Site, Date of Survey: October 10, 1992: EG&G Energy Measurements, Inc., Survey Report NV-93-090, 22 p.

Gillespie, D., 1994, Evaluation of well PM-2 for addition to Environmental Surveillance Monitoring Network: University of Nevada, Desert Research Institute Report, 17 p.

Hasler, J.W., and Byers, F.M., Jr., 1965, Preliminary report on the lithology of Pahute Mesa drill hole No. 2, Pahute Mesa, Nevada Test Site: U.S. Geological Survey Special Studies I-39, 20 p.

Hem, J.D, 1985, Study and interpretation of the chemical characteristics of natural water [3d ed.]: U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Henny, R.W., 1969, Schooner observations and early results: Air Force Weapons Laboratory, Technical Report AFWL-TR-69-133, 54 p.

Laczniak, R.J., Cole, J.C., Sawyer, D.A., and Trudeau, D.A., 1996, Summary of hydrogeologic controls on groundwater flow at the Nevada Test Site, Nye County, Nevada: U.S. Geological Survey Water-Resources Investigations Report 96-4109, 59 p.

O'Hagan, M.D., and Laczniak, R.J., 1996, Ground-water levels beneath eastern Pahute Mesa and vicinity, Nevada Test Site, Nye County, Nevada: U.S. Geological Survey Water-Resources Investigations Report 96-4042, 1 sheet.

Orkild, P.P., 1969, Review of existing and potential test sites in Areas 18, 19, and 20, Pahute Mesa, Nevada Test Site: U.S. Geological Survey Special Studies I-76, 13 p.

Orkild, P.P., and Jenkins, E.C., 1970, Report of exploration progress, Pahute Mesa, January 31, 1968 - October 1, 1969: U.S. Geological Survey Special Studies I-23-17, 83 p. Purtymun, W.D., Harrill, J.R., and Rush, F.E., 1969, Geologic data for U20u satellite holes #1, #2, #3, and #4, and studies of the orientation of joints in the Thirsty Canyon Tuff, Area 20, Pahute Mesa, Nevada Test Site: U.S. Geological Survey Open-File Report, 19 p.

Romney, E.M., Essington, E.H., Fowler, E.B., Tamura, T., and Gilbert, R.O., 1987, Plutonium in the desert environment of the Nevada Test Site and the Tonopah Test Range: Symposium on Environmental Research on Actinide Elements, Hilton Head, S.C., November 1983, Proceedings, p. 121-130.

Thordarson, William, Young, R.A., and Winograd, I.J., 1967, Records of wells and test holes in the Nevada Test Site and vicinity (through December 1966): U.S. Geological Survey Open-File Report TEI-872, 26 p.

U.S. Department of Energy, 1994, United States nuclear tests, July 1945 through December 1992: Nevada Operations Office, DOE/NV-209 (Rev. 14), 112 p.

U.S. Environmental Protection Agency, 1996, Drinking water regulations and health advisories: Office of Water, U.S. Environmental Protection Agency, EPA 822-R-96-001, 11 p.

Warren, R.G., Sawyer, D.A., and Covington, H.R., 1989, Revised volcanic stratigraphy of the southwestern Nevada volcanic field, *in* Olsen C.W., and Carter, J.A., eds., Proceedings of Fifth Symposium on Containment of Underground Nuclear Explosions: Santa Barbara, Calif., Mission Research Corp., CONF-8909163, v. 2, 33 p.

Winograd, I.J., and Thordarson, William, 1975, Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site: U.S. Geological Survey Professional Paper 712-C, 126 p.

APPENDIX A. Hole History, Well History, Core Samples, and Cementing Record for Well PM-2

The information contained in Appendix A was provided by Raytheon Services Nevada (formerly Fenix & Scisson). It is presented in the format provided to the USGS.

APPENDIX A 23

:

Date 09-07-65

HOLE HISTORY DATA

Approved: J. Walker

法范围法 经公司公司公司

Date 09-07-65		HOLE HISTORY DATA			Approved: J. Walker						
HOLE No.: Pahute #2				W.O. No.: 1160-36			I.D. No.: 1131				
USER:		LRL		TYPE HOLE: Expl			loratory				
LOCATIO	N: NTS			COUNTY: Nye			AREA: 20)			
SURFACE	COORDIN	ATES: N 944	4,581.79 E 528,	,655.28			GROUNI) ELEVATIO	ON: 5585.6'		
RIG ON L	OCATION: 5	5-20-64		SPUDDED:	5-20-64		COMPLE	TED: 10-13	-64		
REMARK	S: Static wat	er level appr	oximately 1300)'.							
CIRCULA	TING MEDI	A: Air, soap	and water to 6	450' and mud to	o 8782'.						
No. of CO	MPRESSOR	S & SIZE: 8	Gardner Denv	er (900 cfm)							
TYPE DR	ILLING EQU	JIPMENT: E	Bethleham MA-	-10							
BORE HO	DLE RECOF	ນ				CASING I	RECORD				
FROM	то	SIZE	I.D	WT/.FT.	WALL	GRADE	CPL'G.	FROM	то	CU.FT.CM	
0' 44'	44' 2507'	26" 17-1/2"	19.25" 12.615"	78.6# 54.5#	.375″ .380″	H-40 J-55	BW 8R	0' 0'	44' 2492'	150 ** 3240	
2507'	5498'	12-1/4″	8.921″ 8.835″	36.0# 40.0#	.352" .395"	J-55 N-80	ST&C	0' 3674'	3674 ' 5498'	860	
5498' 8775'	8775 ' 8782 '	8-5/8" 6-1/8"									
TOTAL DI	EPTH: 8782'			MANDREL DEPTH: NONE			PLUGS: NONE				
JUNK:			None								
RIG DATA	: See survey:	s, page 8 and	l a list of logs, j	page 10.							
DEV. DAT	EV. DATA M.D.: 6450' T.V.D.: 6446.19' REFERENCE: 151-SH-267 In Ru					1-267 In Ru	n				
BOTTOM	HOLE COO	RDINATES:	N 944,581.15	E 528,655.45@)6446.19 '						
CORING I	DATA: See co	ore Data, pag	;e 11.								
NON-OPERATIONAL TIME			OPERATIONAL DELAY TIME				TIME	SUMMARY	ł –		
Move Rig	up & down		* days	Equipment		9.5 days	Starting Date: 05-20-64				
Secured			1.9 days	Caving 31.8 days			Completion Date: 1		10-13-64	10-13-64	
Suspended			days	Lost Circ. 5.2 days			Elapse Time 145.87 days		ys		
Bail & Run Mandrel days			Fishing 2.2 days			Total N_O Time 26.		26.5 days	5.5 days		
Logging 7.7 days			Other days			Total O_D Time		48.7 days			
Survey 1.6 days						Working Time		42.97 days			
Casing .6 days						Trips		27.7			
Cement 4.7 days											
Coring 4.3 days											
Other 5.7 days			TOTAL								
	TOTAL 26.5 days					48.7 days					

**50 ft³ inside casing.

2

24 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

Appendix B Revision #1

.

WELL HISTORY

Pahute Mesa Exploratory Hole #2

- 5-20-64 Bethleham MA-10 rig on location and rigged up at 0800 hours. Drilled 12 1/4" h ole from 0' to 44'. Reamed 12 1/4" hole to 26" hole.
- 5-21-64 Finished reaming 12 1/4" hole to 26" to 44'. Ran 20" O.D. casing to 44'. Cemented with 50 cu. ft. of 50-50 cal seal and neat cement inside the casing.
- 5-22-64 Finished cementing 20" casing with 100 cu. ft. of neat cement and 2% CaC12 down the annulus.
- 5-23-64 Drilled out cement and drilled 12 1/4" hole form 44' to 135'. Reamed 12 1/4" hole to 17 1/2" hole from 44' to 135.
- 5-24-64 Drilled 17 1/2" hole from 135' to 320'.
- 5-25-64 Cored from 320' to 327' with 5' of recovery. Drilled 17 1/2" hole from 320' to 445.
- 5-26-64 Drilled 17 1/2" hole from 446' to 512'. Left bit, bit sub, and bottom drill collar in hole. Fish for and recovered same with 10 1/4" overshot. Cored from 512' to 519 with no recovery.
- 5-27-64 Drilled 17 1/2" hole from 512' to 562. Cored from 521' to 536' with no recovery. Worked on equipment.
- 5-28-64 Drilled 17 1/2" hole from 550' to 887'. Cored from 550' to 566' with 90% recovery and from 887' to 895' with 100% recovery.
- 5-29-64 Drilled 17 1/2" hole from 887' to 1312'. Cored from 1085' to 1092' with 5' of recovery.
- 5-30-64 Drilled 17 1/2" hole from 1312' to 1510'. Cored from 1312' to 1319' with 6' recovery and from 1510' to 1517' with full recovery.
- 5-31-64 Drilled 17 1/2" hole from 1510' to 1800'
- 6-1-64 Drilled 17 1/2" hole from 1800' to 2056'. Cored from 1807' to 1819' with 7' of recovery.
- 6-2-64 Drilled 17 1/2" hole from 2056 to 2226'. Cored from 2100' to 2108' with 100% recovery.
- 6-3-64 Drilled 17 1.2" hole from 2226 to 2400'.
- 6-4-64 Drilled 17 1/2" hole from 2400' to 2500'. Cored from 2400' to 2407' with 100% recovery and from 2500' to 2407 with 90% recovery.
- 6-5-64 Drilled 14 1/2" hole from 2500' to 2507'. Prepared to log.
- 6-6-64 Ran Birdwell caliper, density, temperature and electric logs to 2470.

APPENDIX A 25

Well Histo	ry Pahute Mesa Exploratory Hole #2	Page -2-
6-7-64	Cleaned hole to run casing. Ran 13 3/8" O.D. Casing to 2492'. Cer	mented Stage @1
	with 800 ft^3 of 1-1 neat cement and perlite with 4% dry gel, 2% C	aC12 and 1%
	Halad-9; followed by 150 ft^3 of neat cement with 2% CaCl ₂ added	-
	#2 with 500 ft ³ of 1-1 neat cement and perlite with 2% $CaCl_2$ and	-
6-8-64	Cemented Stage #3 with 750 ft ³ of 1-1 neat cement and perlite, 2%	
	gel. Tagged top of cement with wire line at 330'. Cemented Stage	
	neat cement and 2% CaC12. Tagged top of cement at 230'. Cemen	-
	surface with 450 ft^3 of 1-1 neat cement and perlite, 4% dry gel and	12% CaC12.
6-9-64	Nippled up. Drilled 9 5/8' hole through cement to 2495'.	-1- from 25071 to
6-10-64	Drilled cement from 2495' to 2507' with 9 5/8" bit. Drilled 9 5/8" h	1000000000000000000000000000000000000
6-11-64	2700'. Prepared to core. Cleaned out 90' of fill on the bottom. Drilled 9 5/8" hole from 2700' to 2952'. Cored from 2700' to 2707	" with full
0-11-04	recovery.	with full
6-12-64	Drilled 9 5/8" hole from 2952' to 3190'. Cored from 2952' to 2959	' and from 3190'
	to 3196' with full recovery.	
6-13-64	Drilled 9 5/8" hole from 3190' to 3543'. Cored from 3447' to 3449	' with full
	recovery.	
6-14-64	Drilled 9 5/8" hole from 3543' to 3820'. Cored from 3680' to 3687	" with full
	recovery.	
6-15-64	Drilled 9 5/8" hole from 3820' to 4000'. Cored from 3900' to 3907	" with full
	recovery.	
6-16-64	Drilled 9 5/8" hole from 4000' to 4175'. Cored from 4100' to 4107	" with 4' of
< 1 - < 1	recovery.	41001
6-17-64	Made trip for core barrel. Cleaned out 70' of fill after trip. Cored fi	rom 4175' to
6-18-64	4182'. Found 32' of fill after coring. Washed out same.	a in Drillad
0-10-04	Cleaned out and reamed hole from 4150' to 4182'. Hole kept cavir. 9 5/8" hole from 4182' to 4211'.	ig in. Difficu
6-19-64	Drilled 9 5/8" hole from 4211' to 4292'. Cleaned hole with core ba	rrel at 3942'
0 19 01	Made a trip for bit. Cleaned hole to 4292'.	
6-20-64	Drilled 9 5/8" hole from 4292' to 4322'. Cleaned out hole for core.	Cored from 4322'
	to 4329' with full recovery.	
6-21-64	Drilled 9 5/8" hole form 4322' to 4515'.	
6-22-64	Drilled 9 5/8" hole from 4515' to 4637'. Cored from 4532' to 4537	" with full
	recovery.	
6-23-64	Drilled 9 5/8" hole from 4637' to 4750'. Cored from 4750. Cored f	rom 4750' to

26 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

4757' with 100% recovery. Hit bridge approximately 120' off bottom.

Well History Pahute Mesa Exploratory Hole #2

- 6-24-94 Washed to bottom. Drilled 9 5/8" hole from 4750' to 4970'.
- 6-25-64 Cored from 4970' to 4975' with full recovery. Repaired equipment.
- 6-26-64 Repaired equipment.
- 6-27-64 Repaired equipment. Drilled 9 5/8" hole from 4970' to 5059'.
- 6-28-64 Drilled 9 5/8" hole from 5059' to 5202'. Cored from 5202' to 5204' with full recovery.
- 6-29-64 Drilled 9 5/8" hole from 5202' to 5534'.
- 6-30-64 Drilled 9 5/8" hole from 5534' to 5617'. Cored from 5550' to 5557' with 3' of recovery.
- 7-1-64 Drilled 9 5/8" hole from 5617' to 5786'. Cored from 5786' to 5792' with no recovery.
- 7-2-64 Drilled 9 5/8" hole from 5786' to 5892'. Cored from 5892' to 5899' with full recovery.
- 7-3-64 Drilled 9 5/8" hole from 5892' to 6037'. Stuck drill pipe. Left (11) drill collars and
 (8) stands of drill pipe in hole. Went in hole with overshot but hit bridge. Cleaned hole with bit. Top of fish at 4940'.
- 7-4-64 Cleaned hole to fish. Went in hole with overshot.
- 7-5-64 Recovered fish. Went in hole with bit and hit bridge at 4067'. Washed out bridges.
- 7-6-64 Washed out bridges to bottom. Drilled 9 5/8" hole from 6037' to 6080'. Made a short trip. Cleaned out 40' of fill. Conditioned hole for logs.
- 7-7-64 Cleaned hole for logs. Made a short trip to check for fill. Hit bridge at 4180'. Washed to bottom. Nippled up for aerated water.
- 7-8-64 Cleaned out bridges.
- 7-9-64 Pulled out of hole and W.O water. Ran in hole with 9 5/8" bit to a bridge at 4067'. Cleaned out bridges.
- 7-10-64 Cleaned out bridges. Ran electric log and temperature survey.
- 7-11-64 Ran 3-D and velocity log. Ran salinometer log. Ran caliper log to 3983'.
- 7-12-64 Ran water tests.
- 7-13-64 Ran water tests. Ran Birdwell tracer injector log.
- 7-14-64 Ran Birdwell tracer injector log. Ran water tests.

1.4

7-15-64 Ran water tests.

.15

7-16-94 Prepared Davis mix and injected mix in hole. Made a trip in hole. Unloaded hole at 6 stand intervals, starting at approximately 2250'. Mixed and injected Davis mix.

17 7

7-17-64 Nippled up. Reamed 9 5/8" hole to 12 1/4" from 2507' to 3006.

1.1

APPENDIX A 27

Well History Pahute Mesa Exploratory Hole #2

- 7-18-64 Reamed 9 5/8" hole to 12 1/4" from 3006' to 3476'.
- 7-19-64 Reamed 9 5/8" hole to 12 1/4" from 3476' to 3893'.
- 7-20-64 Reamed 9 5/8" hole to 12 1/4" from 3893' to 4045'.
- 7-21-64 Reamed 9 5/8" hole to 12 1/4" from 4045 'to 4152'. Mixed mud to use in hole instead of Davis mix.
- 7-22-64 Mixed mud and lost circulation material.
- 7-23-64 Mixed mud and lost circulation material. Washed to bottom with 9 5/8" bit. Reamed9 5/8" hole to 12 1/4" from 4152' to 4169'.
- 7-24-64 Reamed 9 5/8" hole to 12 1/4" from 4169' to 4263'
- 7-25-64 Reamed 9 5/8" hole to 12 1/4" from 4263' to 4297'. Cleaned out 9 5/8" hole.
- 7-26-64 Cleaned out 9 5/8" hole. Reamed 9 5/8" hole to 12 1/4" from 4297' to 4398'.
- 7-27-64 Reamed out 9 5/8" hole to 12 1/4" from 4398' to 4497'. Cleaned out hole from 4447' to 4479' with 9 5/8" bit.
- 7-28-64 Cleaned out 9 5/8" hole from 4479' to 4578'.
- 7-29-64 Reamed 9 5/8" hole to 12 1/4" from 4447' to 4625'.
- 7-30-64 Reamed 9 5/8" hole to 12 1/4" from 4625' to 4750'.
- 7-31-64 Reamed 9 5/8" hole to 12 1/4" from 4750' to 4888'.
- 8-1-64 Reamed 9 5/8" hole to 12 1/4" from 4888' to 4970'.
- 8-2-64 Reamed 9 5/8" hole to 12 1/4" from 4970' to 5068'.
- 8-3-64 Reamed 9 5/8" hole to 12 1/4" from 5068' to 5163'.
- 8-4-64 Reamed 9 5/8" hole to 12 1/4" from 5163' to 5288'.
- 8-5-64 Reamed 9 5/8" hole to 12 1/4" from 5288' to 5359'.
- 8-6-64 Reamed 9 5/8" hole to 12 1/4" from 5359' to 5436'.
- 8-7-64 Reamed 9 5/8" hole to 12 1/4" from 5436' to 5500'. Ran Birdwell temperature log.
- 8-8-64 Ran Birdwell caliper, density and 3-D logs to 5500'.
- 8-9-64 Ran Birdwell continuous velocity and electric logs.

Well History Pahute Mesa Exploratory Hole #2

۰.

- 8-10-64 Ran 45 joints 40# N-80 (1823.62') and 88 joints 36# J-55 (3676') 9 5/8" csg. with Baker guide shoe and float collar and D.V. tool with metal petal basket 30' below D.V. tool. D.V. tool set at 510'. Set 9 5/8" O.D. casing at 5498'. Cemented Stage #1 with 350 ft³ neat cement with 12 1/4" gilsonite/sack cement, 4% gel, 1% FLAC and 0.2% of D-8; followed by 150 ft³ of neat cement, 1% FLAC and 0.2% of D-8. Checked cement top at 4145'. Cemented Stage #2 to surface with Halliburton D.V. tool with 360 ft³ neat cement and 2% CaC12.
- 8-11-64 Unloaded hole. Drilled out cement and D.V. tool. Unloaded hole.
- 8-12-64 Drilled 8 5/8" hole from 5498' to 5627'.
- 8-13-64 Drilled 8 5/8" hole from 5627' to 5913'.
- 8-14-64 Drilled 8 5/8" hole from 5913' to 6272'. Went to mist drilling.
- 8-15-64 Drilled 8 5/8" hole from 6272' to 6450'. Attempted to core but plugged core barrel.
- 8-16-64 Attempted to core at 6450' but again plugged core barrel. Went in hole with 8 5/8" bit and washed out a bridge at 5845'.
- 8-17-64 Washed out bridges and cleaned hole from 5825' to 5860'.
- 8-18-64 Washed out bridge from 5845' to 5860'. Attempted to dry up the hole.
- 8-19-64 Cleaned out hole to 6180'. Attempted to run Birdwell caliper log and hit bridge at 5817'. Cleaned out bridge from 5857' to 5918'.
- 8-20-64 Ran Birdwell caliper log to 5801'. Secured rig on stand by ready.
- 8-21-64 Set Lynos Packers at 5780' and 5460' and squeezed 1680 gallons of AM9 into the formation.
- 8-22-94 Cleaned out hole to 6450'.
- 8-23-64 Attempted to core but hit bridge at 5845'. Cleaned out hole from 5845' to 6430'.
- 8-24-64 Cleaned out hole. Waited on orders.
- 8-25-64 Cleaned out hole with aerated water. Mixed mud. Injected in the hole 500 bbls of mud.
- 8-26-64 Cleaned out hole with mud.
- 8-27-64 Cleaned out hole with mud.
- 8-28-64 Cleaned out hole with mud.
- 8-29-64 Cleaned out hole with mud. Stuck pipe at 6025'. Pumped pipe free. Stuck pipe at 6035' and pulled loose. Added 500 bbls. diesel oil to mud.
- 8-30-64 Added 70 bbls. diesel oil to mud. Cleaned out hole to 6399'.
- 8-31-64 Cleaned out hole to 6450'.
- 9-1-64 Cleaned out hole. Drilled 8 5/8" hole from 6450' to 6525'.

Page -6-

- 9-2-64 Drilled 8 5/8" hole from 6525' to 6550'. Cored, Core #28, from 6550' to 6552'.
- 9-3-64 Finished coring Core #28 from 6552' to 6558'. Recovered 1' of core. Drilled 8 5/8" hole from 6550' to 6597'.
- 9-4-64 Drilled 8 5/8" hole from 6597' to 6650'.
- 9-5-64 Drilled 8 5/8" hole from 6650' to 6748'.
- 9-6-64 Cored from 6748' to 6753' with 4' of recovery. Drilled 8 5/8" hole from 6748' to 6767'.
- 9-7-64 Drilled 8 5/8" hole from 6767' to 6839'.
- 9-8-64 Drilled 8 5/8" hole from 6839' to 6914'.
- 9-9-64 Drilled 8 5/8" hole from 6914' to 6980'.
- 9-10-64 Drilled 8 5/8" hole from 6980' to 7029'.
- 9-11-64 Drilled 8 5/8" hole from 7029' to 7129'. Cored from 7029' to 7035' with full recovery.
- 9-12-64 Drilled 8 5/8" hole from 7129' to 7196'.
- 9-13-64 Drilled 8 5/8" hole from 7196' to 7242'.
- 9-14-64 Drilled 8 5/8" hole from 7242' to 7305'.
- 9-15-64 Drilled 8 5/8" hole from 7305' to 7400'. Circulated for Core #32.
- 9-16-64 Cored from 7400' to 7408' with 8' of recovery. Ran junk basket on top of bit and drilled from 7408' to 7428'.
- 9-17-64 Drilled 8 5/8" hole from 7428' to 7543'.
- 9-18-64 Made a trip for bit. Drilled 8 5/8" hole from 7543' to 7595'.
- 9-19-64 Drilled 8 5/8" hole from 7595' to 7674'.
- 9-20-64 Worked on draw works. Drilled 8 5/8" hole form 7674' to 7712'.
- 9-21-64 Drilled 8 5/8" hole from 7712' to 7800'. Circulated for core.
- 9-22-64 Cored from 7800' to 7801.5'. Drilled 8 5/8" hole form 7801.5' to 7840'.
- 9-23-64 Drilled 8 5/8" hole from 7840' to 7926'. Made a trip for bit.
- 9-24-64 Finished trip for bit. Drilled 8 5/8" hole from 7926' to 7939'. Cored from 7939' to 7942' with 3' recovery.
- 9-25-64 Ran temperature, continuous velocity log, electric log, density log. Had trouble with density log tool. Ran caliper lot to 7945' Birdwell depth.
- 9-26-64 Ran density log. Ran Sperry Sun.

Well History Pahute Mesa Exploratory Hole #2

Page -7-

•

- 9-27-64 Filled pipe with mud. Circulating same from bottom of casing to surface. No bridges or fill. Drilled 8 5/8" hole form 7942' to 8020'. Made trip for bit.
- 9-28-64 Drilled 8 5/8" hole from 8020' to 8045'. Cored from 8045' to 8053' with 8' recovery. Pipe stuck while coring. Worked pipe loose.
- 9-29-64 Drilled 8 5/8" hole from 8053' to 8062'. Tripped for bit. Drilled 8 5/8" hole from 8062' to 8095'.
- 9-30-64 Drilled 8 5/8" hole from 8095' to 8151'. Made trip to change bits. Drilled from 8151' to 8173'.
- 10-1-64 Drilled 8 5/8" hole from 8173' to 8273'.
- 10-2-64 Cored from 8273' to 8281' with 7' of recovery. Drilled 8 5/8" hole from 8281' to 8300'.
- 10-3-64 Drilled 8 5/8" hole from 8300' to 8400'. Circulated for core.
- 10-4-64 Cored from 8400' to 8408' with 8' recovery. Drilled 8 5/8" hole from 8408' to 8419'.
- 10-5-64 Drilled 8 5/8" hole from 8419' to 8505'.
- 10-6-64 Drilled 8 5/8" hole from 8505' to 8542'. Cored from 8542' to 8545.5' with 3.5' recovery.
- 10-7-64 Laid down core barrel. Drilled 8 5/8" hole from 8545' to 8629'.
- 10-8-64 Drilled 8 5/8" hole from 8629' to 8728'.
- 10-9-64 Drilled 8 5/8" hole from 8728' to 8775'. Cored from 8775' to 8782' with 7' recovery.
- 10-10-64 W.O.O. Ran temperature and electric logs.

₹u.

1. 25

- 10-11-64 Finished running electric log. Ran 3-D, velocity and density logs. Ran caliper log to 8776'.
- 10-12-64 Ran Sperry Sun Gyro Survey. Laid down drill collars and drill pipe.
- 10-13-64 Laid down drill pipe and drill collars. Jetted pits. Rig released at 0500 hrs. Hole completed 10-13-64.

The Sperry Sun tool could not get below 6450'. From this point to the T.D. recorded Totco Surveys show the deviation. The direction was not recorded.

TOTOO DEVI ATIONI SI IDVEVS

DEPTH	DEVIATION
<u>6800</u> ′	<u>3 3/4</u> °
<u>7029'</u>	<u>4 1/2</u> °
<u>7129'</u>	<u>4</u> °
<u>7228'</u>	<u>3 1/4</u> °
<u>7400'</u>	<u>1 3/4</u> °
<u>7543'</u>	<u>1 3/4</u> °
<u>7650'</u>	<u>3</u> °

APPENDIX A 31

Well History Pahute Mesa Exploratory Hole #2

Page -8-

		TOTCO DEVIATION SU	<u>RVEYS</u>
	<u>D</u>	<u>EPTH</u>	DEVIATION
	<u>79</u> 80 81	<u>300'</u> 926' 920' 1 <u>50'</u> 542'	$\frac{3 1/4^{\circ}}{3 1/2^{\circ}}$ $\frac{3 1/2^{\circ}}{3^{\circ}}$ $\frac{3^{\circ}}{3^{\circ}}$
	SPERRY SUP	<u>I MULTISHOT GYROSCOPI</u>	<u>C SURVEYS</u>
MD	TVD	Horizontal Displacement	Reference

Date	MD	<u>TVD</u>	Horizontal Displacement	<u>Reference</u>	<u>Run</u>
9-28-64	4000 [,]	3999.84′	16.73' (S 35° 48' W)	151-SH-267	In
9-28-64	4000 [,]	3999.85 [,]	15.01' (S 36° 34' W)	151-SH-267	Out
9-28-64	6450 [,]	6446.19 [,]	101.82' (S 64° 17' E)	151-SH-267	In

In Run 151-SH-267

TVD	L otitudo	Departure
		Departure
100′	0° N	0° E
100.00′	0.25°S	0.15°W
199.99′	0.12 [°] N	0.30°W
299.99'	0.47° S	0.26° W
399.98'	0.54° S	0.20° E
499.98'	0.44° S	0.77° E
599.98'	0.48° S	1.06° E
699.98'	0.61° S	1.31° S
799.98′	0.75° S	1.41° E
899.98′	0.73° S	1.21° E
999.98'	0.64 [°] S	0.77° E
1099.98'	0.45° S	0.24° E
1199.98'	0.70° S	0.02° E
1299.97'	0.81° S	0.70° W
1399.97'	0.74 [°] S	1.70° W
1499.96'	0.75 [°] S	2.75° W
1599.96'	1.23° S	3.54° W
	100.00' 199.99' 299.99' 399.98' 499.98' 599.98' 699.98' 799.98' 899.98' 1099.98' 1099.98' 1199.98' 1299.97' 1399.97'	100' 0° N 100.00' 0.25°S 199.99' 0.12°N 299.99' 0.47° S 399.98' 0.54° S 499.98' 0.44° S 599.98' 0.48° S 699.98' 0.61° S 799.98' 0.75° S 899.98' 0.61° S 1099.98' 0.61° S 1099.98' 0.73° S 999.98' 0.64° S 1099.98' 0.64° S 1099.98' 0.64° S 1199.98' 0.70° S 1299.97' 0.81° S 1399.97' 0.74° S 1499.96' 0.75° S

32 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

· · .

APPENDIX A 3	3
--------------	---

MD	TVD	Latitude	Departure
1700′	1699.95'	1.36° S	4.39° W
1800'	1799.95'	1.38° S	5.32° W
1900'	1899.95'	1.35 [°] S	6.30 [°] W
2000′	1999.94'	1.36° S	7.24 [°] W
2100'	2099.93'	1.18 [°] S	8.37 [°] W
2200'	2199.93'	1.08° S	9.05° W
2300'	2299.93'	0.89° S	9.26° W
2400'	2399.93'	0.82° S	9.15° W
2500'	2499.93'	1.05 [°] S	9.03° W
2600'	2599.93'	1.40 [°] S	9.12° W
2700'	2699.93'	1.68 [°] S	9.25° W
2800'	2799.93'	1.87 [°] S	9.24 [°] W
2900'	2899.93'	2.19° S	9.13° W
3000′	2999.93'	2.63° S	9.11° W
3100'	3099.93'	3.21° S	8.98° W
3200'	3199.92'	3.91 [°] S	8.77° W
3300′	3299.92'	4.75° S	8.41° W
3400'	3399.92'	5.44 [°] S	8.01° W
3500'	3499.91'	6.29° S	7.53° W
3600'	3599.90'	7.54° S	7.03° W
3700'	3699.89'	8.80° S	6.92° W
3800'	3799.88'	10.53° S	7.17° W
3900'	3899.86'	12.15° S	8.19° W
4000'	3999.84'	13.57° S	9.79° W
4100'	4099.83'	14.39° S	11.18° W
4200'	4199.82'	15.51° S	12.15° W
4300'	4299.81'	16.41° S	12.81° W
4400'	4399.79'	17.95° S	12.01° W
4500′	4499.73'	20.76° S	10.19° W
4600'	4599.67'	23.74° S	8.15° W
4700'	4699.56'	27.12° S	4.95° W

بمرتبع ليسرب فسرو

10.

÷.,

In Run 151-SH-267

MD	TVD	Latitude	Departure
4800'	4799.42'	27.54° S	1.20° W
4900'	4899.31'	30.92° S	2.06° E
5000'	4999.18'	34.37° S	5.64° E
5100'	5099.08'	37.51° S	8.96 ⁰ E
5200'	5198.91'	40.68° S	13.80° E
5300'	5298.66'	44.03° S	19.91° E
5400'	5398.41'	45.98° S	26.68° E
5500'	5498.16'	48.53° S	33.30° E
5600'	5597.98′	49.68° S	39.22° E
5700'	5697.76'	49.56° S	45.78° E
5800'	5797.47'	48.25° S	53.29° E
5900'	5897.27'	48.12° S	59.24° E
6000'	5996.96'	46.48° S	66.56° E
6100′	6096.75'	45.11° S	72.89° E
6200'	6196.51'	43.86 [°] S	79.77° E
6300'	6296.35'	42.83° S	85.16° E
6400′	6396.25'	43.42° S	89.40° E

In Run 151-SH-267

34 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

,

-

3

1

.....

		· ·		
Core #	Date	Interval	Recovery	Formation & Remarks
1	5-25-64	320'-327'	5'	Welded tuff
2	5-26-64	512'-519'	0'	
3	5-27-64	521'-536'	0′	
4	5-28-64	562'-572'	9'	Bedded tuff
5	5-28-64	875'-883'	8′	Bedded tuff
6	5-29-64	1085'-1092'	5'	Tuff -slightly broken
7	5-30-64	1300'-1307'	6'	Tuff
8	5-30-64	1510'-1517'	7'	Zeolitized tuff
9	6-1-64	1800'-1807'	7'	Zeolitized tuff
10	6-2-64	2100'-2108'	8′	Zeolitized tuff
11	6-3-64	2400'-2407'	7'	Zeolitized tuff
12	6-4-64	2500'-2507'	6′	Welded tuff
13	6-11-64	2700'-2707'	7'	Tuff breccia - fractured
14	6-11-64	2952'-2959'	7'	Dacite
15	6-12-64	3190'-3196'	6'	Dacite - fractured
16	6-13-64	3447'-3449'	2′	Tuff breccia -fractured
17	6-14-64	3680'-3687'	7'	Tuff
18	6-15-64	3900'-3907'	7'	Tuff breccia - alight fractures
19	6-16-64	4100'-4107'	4′	Tuffaceous mudstone - very broken
20	6-17-64	4175'-4282'	7'	Tuffaceous mudstone
21	6-20-64	4322'-4329'	7'	Dacite - fractured
22	6-22-64	4530'-4537'	7'	Dacite - fractured
23	6-23-64	4750'-4757'	7'	Dacite - fractured
24	6-25-64	4970'-4975'	5'	Rhyodacite - slight fractures
25	6-28-64	5202'-5204'	2'	Rhyodacite - highly fractured
26	6-30-64	5550'-5557'	5'	Rhyodacite - highly fractured
27	7-1-64	5786′-5792′	5'	Rhyodacite - highly fractured
28	7-2-64	5892'-5899'	7'	Latite - highly fractured
29	9-2-64	6550'-6558'	1′	Dacite - fractured

Yere,

Core Data

APPENDIX A 35

ć

Core #	Date	Interval	Recovery	Formation & Remarks
30	9-6-64	6748'-6753'	4'	Dacite - fractured
31	9-11-64	7029'-7035'	6'	Dacite - highly fractured
32	9-16-64	7400'-7408'	8′	Dacite - fractured
33	9-22-64	7800'-9801.5'	1.5'	Dacite - highly fractured
34	9-24-64	7939'-7942'	3'	Dacite - fractured
35	9-28-64	8045'-8053'	8′	Dacite - fractures
36	10-2-64	8273'-8281'	7'	Dacite - fractures
37	10-4-64	8400'-8408'	8′	Aplite breccia
38	10-7-64	8542'-8545.5'	3.5'	Granodiorite
39	10-9-64	8775'-8782'	7'	Granodiorite

Core Data

36 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

۶·

CEMENTING RECORD

USER: HOLE NO: PM Ex. #2 DATE PREPARED: 09-19-90 By JEC

CEMENTING RECORD FOR: 13-3/8" O.D., 54.5#, 0.38" wall casing at 2492' in 17-1/2" hole to 2507'. 20" O.D., 78.6#, 0.375" wall casing cemented at 44'. Information taken from Hole History.

DATE	CMT STAGE	TOP OF CMT W/SLM (FT)	VOL OF CMT SLRY USED (FT3)	VOL OF CMT SLRY CAL (FT3)	DIFF IN SLRY VOL (FT3)	REMARKS
06-07-64	1		800			50% neat & 50% perlite + 4% gel, 2% CaCl ₂ , & 1% Halad-9
"			150			Neat + 2% CaC1 ₂
66	2		500			50% neat & 50% perlite + 2% CaCl ₂ & 2% gel
06-08-64	3	330	750		<u> </u>	
"	4	230	590		· · · · · · · · · · · · · · · · · · ·	Neat + 2% CaC1 ₂
"	5	Surf	450	· · · · · · · · · · · · · · · · · · ·		50% neat & 50% perlite + 4% gel & 2% CaCl ₂
			3240	3225	+15	

NOTE: Birdwell caliper log run 06-06-64 (NA).

Calculation total pre-figured.

 $\frac{+15 \times 100\%}{3225} = 0.5\%$ excess

SIGNED_____

APPENDIX A 37

CEMENTING RECORD

USER: HOLE ŃO: PM Ex. #2 DATE PREPARED: 09-19-90 By JEC

CEMENTING RECORD FOR: 9-5/8" O.D., 36# Casing at 3676' and 40# casing to 5498' and DV tool at 510' with metal petal at 540' IN 12-1/4" HOLE TO 5500'.12.615" I.D. casing cemented at 2492'. Information taken from hole history.

DATE	CMT STAGE	тор оf Смт W/ (FT)	CMT RISE (FT)	VOL OF CMT SLRY USED (FT3)	VOL OF CMT SLRY CAL (FT3)	DIFF IN SLRY VOL (FT3)	REMARKS
08-10-64	1			350			Neat + 12-1/4 [#] gilsonite/5x, 4% gel, 1% FLAC, & 0.2% D-8
**		4145	1355	150	470	+30	Neat + 1% FLAC & 0.2% D-8
"	2	Surf	540'	360	197	+163	Neat + 2% CaC1 ₂
				860	667	+193	

NOTE: Birdwell caliper log run 08-08-64 (NA).

 $\frac{+193 \times 100\%}{667}$ = 29% excess

Calculations based on 12.5" gauge hole

12.5" O.H. = 0.8522 ft^2 12.615" I.D = 0.8694 ft^2 9-5/8" O.D. = 0.5053 ft^2

SIGNED_____

APPENDIX B. Geophysical Logs Available for Well PM-2

The information contained in Appendix B was provided by Raytheon Services Nevada (formerly Fenix & Scisson). It is presented in the format provided to the USGS.

· • • •

APPENDIX B 39

- .

•••

Original	<u>6-30-65</u>
Revision	<u>9-30-66</u>
Revision #2	<u>8-18-67</u>

,

1

TVDE	DATE	RUN	TOTAL	DEPTH	LOGGED	INTERVAL	
TYPE	DATE	NO.	DRILLERS	LOGGERS	FROM	то	REMARKS
Caliper	6-6-64	1	2496'	2470'	64'	2469'	
Caliper	7-11-64	2	6080'	3983'	2400'	3983'	
Caliper	8-8-64	3	5500'	5500'	2450'	5499'	
Caliper	8-19-64	4	6180′	5817'	5450'	5816'	
Caliper	8-20-64	5	6180′	5801'	5450'	5800'	
Caliper	9-25-64		7942'	7945'	5490'	7940'	
Caliper	10-11-64	2	8781′	8776′	7000′	8775'	
Electric	6-6-64	1	2496′	2453'	1060′	2453'	
Electric	7-10-64	2	6080′	4074′	2484′	4074'	
Electric	7-10-64	3	6080′	4074'	2484′	4074'	
Electric	8-9-64	4	5500'	5500'	2484′	5498'	
Electric	8-9-64	5	5500'	5500'	2484'	5498'	······································
Electric	9-25-64	1	7942'	7945'	5500'	7945'	
Electric	10-11-64	2	8781'	8775'	7000'	8775'	
Radio Active	7-11-64	1	6080′		2300'	3980'	
Radio Active	9-25-64	1	7942'	7945'	5500'	7945'	a
Salinometer	7-11-64	1&2	6080′	4074'	850'	4074'	
Salinometer	7-11-64	3	6080′	3983'	850'	3983'	
Density	6-5-64	1	2496'	2473'	0'	2470'	
Density	7-11-64	2	6080′	3983'	2450'	3983'	
Density	8-8-64	3	5500'	5497'	3800'	5492'	
Density	9-25-64	1	7942'	7945'	5500'	7945'	
Density	10-10-64	2	8781'	8778′	7000'	8775'	
Pressure Finder	9-25-64	1	7942'	7945'	5400'	7940'	MSG
3-D	7-10-64	1	6080'	4076′	2450'	4072′	
3-D	7-10-64	2	6080′	4076'	2450'	4068′	
3-D	8-8-64	3	5500'	5490'	3800'	5488'	
3-D	8-8-64	4	5500'	5500'	3800′	5490'	
Velocity	7-11-64	2	6080′	4074'	2450'	4070'	

40 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

	DATE	RUN	TOTAL	DEPTH	LOGGED	INTERVAL	REMARKS
TYPE	DATE	NO.	DRILLERS	LOGGERS	FROM	то	REMARKS
Velocity	8-9-64	2	5500'	5500'	3100'	5495'	
Velocity	9-25-64	1	7942'	7945'	5470'	7938′	
Velocity	10-11-64	2	8781'	8777'	7000'	8772'	
Temp	6-6-64	1	2496'	2470′	0'	2470'	
Temp	6-7-64	2	2473'		0'	2150'	
Тетр	7-10-64	3	6080′	4076'	0'	4076'	
Temp	7-11-64	4	6080′	3983'	0'	3983'	
Temp	8-2-64	1	5500'	5498′	3800'	5498'	
Temp	8-7-64	5	5500'	5498'	3800'	5498'	
Temp	8-10-64	6	5500'	5438'	0'	5438'	
Temp	9-25-64		7942'	7950'	0'	7950'	
Temp	10-10-64	2	8781′	8780'	7000'	8780'	
E.C.C.	· 5-29-65				5492'	8768'	
Gamma Ray Neutron	4-27-66	1	N/A	N/A	3150'	3650'	
Water Locator	6-6-66	1	N/A	N/A	1010′	1066′	
Water Locator	8-16-66	2	N/A	N/A	900′	974′	961′
Water Locator	4-12-67	3	N/A	Not Reached	850'	950'	Fluid Level 895'
Gyro	9-26-64				0′	6450'	151-SH-267
WL	11-21-67	4	NA	Not Reached	850'	896	
Caliper	11-5-68	6	8775′	Ditto	0'	1000'	
CCL	11-5-68	1	8775'	Ditto	0′	1000′	
FLD	11-5-68	1	8775'	Ditto	864'	2000'	
Caliper	11-8-68	7	8782'	Ditto	0'	1000'	
CCL	11-8-68	· 2	8782'	Ditto	0′	1000′	
Caliper	6-6-69	8	8782'	Ditto	0'	1000'	
CCL	6-6-69	3	8782'	Ditto	0'	1000′	
WL	6-6-69	5	8782'	Ditto	850'	900'	
FF	10-11-64	2	8782'	8775'	7000'	8770'	Welex
Depth Ck	6-20-83		8781'	3066′		3066'	
Thermal	10-19-83		8782′	2721′	0'	2721′	

₹.

13

. . .

APPENDIX B 41

•

5.21

. /

١.

•

,

. .

s.

•

ТҮРЕ	DATE	RUN	TOTAL DEPTH		LOGGED INTERVAL		REMARKS
	DATE	NO.	DRILLERS	LOGGERS	FROM	то	REMARKS
Neutron	10-19-83		8782'	2721′	0'	2721′	
Тетр	10-19-83		8782'	2721′	0'	2721'	
Gamma	10-19-83		8782'	2721′	0′	2721′	
K.U.T.	10-20-83		8782′	3066'	0'	3066'	
Gamma Ray	10-20-83		8782'	3066′	0′	3059'	
K.U.T.	10-21-83		8782'	3062'	1600′	3059'	Fluid Level 2215'
T. L.	10-21-83	· ·	8782'	3062'	1600′	3059'	······································
Caliper	10-21-83		8782'	3062'	1600′	3059'	
E.P.N.	10-21-83		8782'	3065'	8′	3059'	
Gamma Ray	10-21-83		8782'	3065'	8′	3059′	

42 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

APPENDIX C. Summary of Soil-Sampling Surveys at Well PM-2

The information contained in Appendix C was provided by Reynolds Electrical & Engineering Co., Inc. It is presented in the format provided to the USGS.

APPENDIX C 43

Reynolds Electrical & Engineering Co., Inc.

MEMORANDUM

То

F. D. Ferate A. R. Latham

Date

Subject

From

January 13, 1994

ANALYTICAL REPORT ON TRITIUM, SOIL MOISTURE, AND GAMMA ANALYSES OF THE PM-2 WELLHEAD SOIL SAMPLES

Enclosed are Analytical Services Department's results for tritium, moisture content, and gamma analyses of 12 PM-2 wellhead soil samples submitted for analysis on November 22, 1993. Tritium and gamma results are in the units of micro-Curies per gram of soil as submitted (i.e. wet weight).

This report contains results for the following samples:

<u>Client Sample ID</u>	<u>Lab ID</u>	<u>Client Sample ID</u>	<u>Lab ID</u>
WELL PM-2 A-SURFACE WELL PM-2 A-30-CM WELL PM-2 B-SURFACE WELL PM-2 B-30-CM WELL PM-2 C-SURFACE WELL PM-2 C-30-CM	80227 80980 80982 80984 80986 80986 80988	WELL PM-2 D-SURFACE WELL PM-2 D-30-CM WELL PM-2 E-SURFACE WELL PM-2 E-30-CM WELL PM-2 F-SURFACE WELL PM-2 F-30-CM	80990 80992 80994 80996 80998 81000

QUALITY CONTROL

Background and laboratory control samples were analyzed for tritium and gamma with the samples listed above. Results are included in this report.

Please direct any questions you may have to Y. K. Lee at 295-7075.

Enclosures As stated

ARL:YKL:181:VB

cy: Central Files, w/encls., M/S 530 L. S. Sygitowicz w/o encls., M/S 708

NUS CLAR SVT USGS, WRD

REECo

TOTAL QUALITY IS OUR BUSINESS

ي ، ، ، د

AN A EBE COMPANY

44 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

パントで、シリントは「読んをいたけなど」に読みたみ、「読みなみ」」を知道

ANALYTICAL SERVICES DEPARTMENT

SOIL MOISTURE OF PM-2 WELLHEAD SOIL SAMPLES

Reported to: <u>F. D. Ferate</u>

Program No: 113

Packet Nos: <u>D5089 & D5090</u>

Analysis Date: Nov. 25, 1993

Report Date: <u>Jan. 12, 1994</u>

mple_ID_	<u>Lab ID</u>	MOISTURE BY WT.ª
-SURFACE	80979 80981	2.6 4.9
S-SURFACE	80983	1.2
8-30-CM		1.3
-SURFACE		1.1
		25.0
		1.9
		1.7
		2.9
		5.8
		1.8
-30-CM	81001	4.5
	A-SURFACE A-30-CM B-SURFACE	A-SURFACE 80979 A-30-CM 80981 B-SURFACE 80983 B-30-CM 80985 C-SURFACE 80987 C-30-CM 80989 D-SURFACE 80991 D-30-CM 80993 C-SURFACE 80995 C-30-CM 80997 C-SURFACE 80999

а In units of grams of moisture per 100 grams of soil as submitted.

ь The physical appearance of Sample WELL PM-2 C-30-CM is quite difference as compared with other soil samples in this batch. It has a much lighter color and much lower density. Reanalysis of the sample on January 12, 1993 confirmed the relatively high amount of moisture content.

Report Prepared by: <u>Jan 12, 19</u>94 Report Reviewed and Approved by: <u>Lynnfauss</u> Date: <u>1/12/94</u>

ANALYTICAL SERVICES REPORT

Page: <u>1</u> of <u>1</u>

Date: 01/12/94

RADIOANALYTICAL QUALITY CONTROL RESULTS

Reported to: <u>F. D. Ferate</u>

Program Code: <u>113</u>

Packet Nos.: D5089 to D5090

QC SAMP ID	REFERENCE PACKET NO.	SAMP TYPE	ANALYSIS TYPE	SAMPLE VALUE	SAMPLE ERROR	KNOWN VALUE	KNOWN ERROR	UNITS	SPIKE YIELD	ANAL DATE	DET ID
QA Blank 00316	C6368	Empty Bottle	Gamma	No radionuclide detected	N/A	Blank	N/A	N/A	N/A	11/30/93	08
QA Spike 06390	C5778	Water	Tritium	2.88E-05	3.2%	2.99E-05	7.0%	µCi∕g	96.3%	12/14/93	25
QA Blank 06389	C5778	Water	Tritium	9.09E-08	480%	Blank	N/A	µCi∕g	N/A	12/14/93	25
QASpike 12750	C6359	Soil	Gamam Am-241 Co-60 Cs-137	1.85E-04 3.38E-04 2.27E-04	9.2% 8.2% 8.2%	1.76E-04 3.33E-04 2.24E-04	3.5% 2.3% 2.1%	µCi∕g	105% 102% 101%	11/30/93	08

Comment: <u>Sample error is 2 sigma counting error.</u>

46

-- ,

۷. -

· An a sub in the second succession

Page 1

÷

•

EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5089 ITEM 0 ID= WELL PM-2 A-SURFACE SAMPLING DATE 111993 -SAMPLE 80227 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 % ERROR DET LIMIT UNITS 7.31E-07 3.37E+01 2.34E-07 uCi/q H-3 TRITIUM PACKET D5089 ITEM 0 SAMPLING DATE 111993 -SAMPLE 80227 ID= WELL PM-2 A-SURFACE COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 6.93E+02 PROCESSED ON 113093 ************ RESULT *********** ℅ ERROR UNITS DET LIMIT 7.38E-06 1.13E+01 2.40E-07 uCi/g AM241 5.07E-08 uCi/g C060 2.36E-06 1.15E+01 CS137 8.17E-07 1.82E+01 7.06E-08 uCi/g 6.18E-07 5.84E-08 uCi/g EU150 1.86E+01 7.06E-06 1.12E+01 2.03E-07 uCi/g EU152 6.20E-06 1.19E+01 1.70E-07 uCi/g EU154 uCi/g K 40 3.71E-05 1.02E+01 3.05E-07 uCi/g RA226 1.02E-06 2.24E+01 1.23E-07 TH228 2.38E-06 1.42E+01 1.31E-07 uCi/g 2.10E-06 2.21E+01 2.56E-07 TH232 uCi/g 2.04E+00 7.21E+01 0.00E+00 XPEAK 150.8 Kev cpm 209.4 Kev 1.82E+00 7.19E+01 0.00E+00 XPEAK cpm 270.5 Kev 1.49E+00 6.27E+01 0.00E+00 XPEAK cpm 8.58E+01 0.00E+00 XPEAK 328.3 Kev 1.10E+00 cpm 367.6 Kev 1.05E+00 7.98E+01 0.00E+00 XPEAK cpm 488.6 Kev 5.00E-01 1.18E+02 0.00E+00 XPEAK cpm 624.4 Kev 5.45E-01 XPEAK 1.30E+02 0.00E+00 CDW 766.3 Kev 9.90E-01 6.68E+01 0.00E+00 XPEAK cpm 9.70E+01 846.2 Kev 6.35E-01 0.00E+00 XPEAK cpm 0.00E+00 XPEAK 904.6 Kev 6.05E-01 9.85E+01 cpm 934.1 Kev 4.05E-01 1.10E+02 0.00E+00 XPEAK CDW 4.60E-01 1.04E+02 0.00E+00 989.2 Kev cpm XPEAK 8.79E+01 0.00E+00 XPEAK 1016.1 Kev 6.00E-01 cpm 8.60E-01 6.03E+01 0.00E+00 XPEAK 1128.7 Kev Cpm XPEAK 1236.6 Kev 6.77E+01 0.00E+00 7.25E-01 cpm XPEAK 1378.3 Kev 4.60E-01 5.07E+01 0.00E+00cpm 5.75E-01 4.17E+01 0.00E+00 XPEAK 1399.7 Kev cpm XPEAK 1494.6 Kev 2.80E-01 6.58E+01 0.00E+00 cpm XPEAK 1510.2 Kev 9.55E+01 0.00E+00 2.10E-01 cpm XPEAK 1529.9 Kev 0.00E+00 5.03E+01 3.85E-01 cpm 0.00E+00 XPEAK 1540.4 Kev 2.45E-01 6.38E+01 cpm 0.00E+00 XPEAK 1588.5 Kev 3.30E-01 5.75E+01 cpm XPEAK 1597.3 Kev 5.95E-01 4.29E+01 0.00E+00 cpm

1 ...

. . - .

APPENDIX C 47

The second s

** LDAS SUMMARY	REPORT ON 1	12-JAN-94 AT	C 07:42:53 *		
PROJECT: RES EVENT/PROGRAM TYPE: SOIL GROSS (500 ML		VTAL SURVEII	LANCE SPECI	Page 2 AL STUDIES	
PACKET D5089 ITEM 0 SAMPLE 80227 ID= WELL PM-2 XPEAK 1731.0 Kev XPEAK 1848.3 Kev XPEAK 1861.7 Kev	2.85E-01 1.45E-01	4.60E+01 8.59E+01	0.00E+00		
** ANALYSIS: H20_SOIL H20 IN	I SOIL			IN PROCESS **	
PACKET D5089 ITEM 1 SAMPLE 80980 ID= WELL PM-2 COMMENT ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.	H-3 MDA SHOU	JLD BE 3.E-7	′uCi/ml		
**************************************	******	<pre>% ERROR</pre>	DET LIMIT	UNITS	
H-3 TRITIUM	2.79E-06	1.88E+01	4.67E-07	uCi/g	
PACKET D5089 ITEM 1 SAMPLE 80980 ID= WELL PM-2 COMMENT ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.	H-3 MDA SHOU	JLD BE 3.E-7	uCi/ml		
**************************************			DET LIMIT		
CS137 K 40 RA226 TH228 TH232 XPEAK 62.7 Kev XPEAK 837.7 Kev XPEAK 949.4 Kev XPEAK 987.8 Kev XPEAK 1364.5 Kev XPEAK 1421.3 Kev XPEAK 1510.5 Kev XPEAK 1712.2 Kev XPEAK 1731.2 Kev XPEAK 1956.5 Kev	1.17E-07 2.74E-05 1.43E-06 2.47E-06 2.18E-06 2.57E+00 6.05E-01 3.95E-01 3.25E-01 3.05E-01 1.65E-01 1.40E-01 3.00E-01 5.50E-02 1.75E-01	1.08E+01 1.48E+01 1.19E+01	7.56E-08	uCi/g uCi/g uCi/g uCi/g cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	

** ANALYSIS: H20_SOIL H20 IN SOIL

IN PROCESS **

48 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

有效的现在分词的 医乳汁 化偏动合并 化磷酸磷酸盐 计分词通知

3

•

. 1

.

Page

EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5089 ITEM 2 SAMPLING DATE 111993 -ID= WELL PM-2 B-SURFACE SAMPLE 80982 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 % ERROR DET LIMIT UNITS 7.67E+01 4.45E-07 uCi/q H-3 TRITIUM 5.85E-07 PACKET D5089 ITEM 2 SAMPLING DATE 111993 -SAMPLE 80982 ID= WELL PM-2 B-SURFACE COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 6.82E+02 PROCESSED ON 113093 % ERROR DET LIMIT UNITS 9.50E+00 3.07E-07 uCi/q 1.71E-05 AM241 uCi/g 5.91E-08 CO60 4.50E-06 1.01E+018.68E-08 uCi/g CS137 1.05E-06 1.71E+011.21E-06 1.49E+017.63E-08 uCi/g EU150 EU152 1.47E-05 9.72E+00 2.59E-07 uCi/g 1.25E-05 1.03E+01 1.96E-07 uCi/g EU154 1.00E+01 3.92E-07 uCi/g K 40 4.20E-05 2.69E+01 1.46E-07 RA226 8.60E-07 uCi/g 2.28E-06 1.63E+01 1.70E-07 uCi/g TH228 uCi/g 2.24E-06 2.52E+01 3.41E-07 TH232 XPEAK 48.8 Kev 4.18E+00 5.15E+01 0.00E+00 cpm 9.70E+01 0.00E+00 93.3 Kev 2.26E+00 cpm XPEAK 129.4 Kev 1.29E+00 1.28E+02 0.00E+00 XPEAK cpm 209.2 Kev 8.09E+01 0.00E+00 XPEAK 2.04E+00 cpm 232.6 Kev 2.43E+00 6.33E+01 0.00E+00 cpm XPEAK 6.16E+01 0.00E+00 XPEAK 270.1 Kev 2.51E+00 CDW XPEAK 328.4 Kev 1.27E+009.54E+01 0.00E+00 cpm 367.7 Kev 7.09E+01 0.00E+00 XPEAK 1.33E+00 Cpm 434.1 Kev 5.27E+01 0.00E+00 XPEAK 1.62E+00cpm 489.1 Kev 9.70E-01 9.50E+01 0.00E+00 XPEAK cpm 7.21E+01 0.00E+00XPEAK 564.5 Kev 1.23E+00CDW XPEAK 614.4 Kev 1.69E+00 4.91E+01 0.00E+00 cpm 625.3 Kev 1.42E+020.00E+00 XPEAK 5.80E-01 CDW XPEAK 649.8 Kev 8.85E-01 8.95E+01 0.00E+00 cpm 692.5 Kev XPEAK 1.65E+00 5.08E+01 0.00E+00 Cpm XPEAK 860.7 Kev 1.29E+00 6.37E+01 0.00E+00 cpm XPEAK 892.8 Kev 9.90E-01 8.92E+01 0.00E+00 CDW XPEAK 1102.8 Kev 9.02E+01 0.00E+00 7.95E-01 Cpm XPEAK 1140.3 Kev 6.55E-01 8.97E+01 0.00E+00 cpm 5.70E-01 7.87E+01 0.00E+00 XPEAK 1233.9 Kev cpm XPEAK 1246.4 Kev 8.33E+01 0.00E+00 6.10E-01 cpm XPEAK 1378.1 Kev 3.60E-01 6.80E+01 0.00E+00 cpm XPEAK 1509.6 Kev 1.45E-01 1.13E+02 0.00E+00 cpm

÷

*

....

APPENDIX C 49

PROJECT: RES EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES TYPE: SOIL GROSS (500 ML BOTTLE)

PACKET D5089 ITEM 2	2				
SAMPLE 80982 ID:	= WELL PM-2	B-SURFACE	SAMPLING	DATE 111993	-
XPEAK 1519.5	Kev	2.30E-01	8.09E+01	0.00E+00	cpm
XPEAK 1588.9	Kev	2.90E-01	7.27E+01	0.00E+00	cpm
XPEAK 1621.0	Kev	3.30E-01	5.30E+01	0.00E+00	cpm
XPEAK 1631.4	Kev	2.80E-01	4.51E+01	0.00E+00	cpm
XPEAK 1638.2	Kev	2.60E-01	5.60E+01	0.00E+00	cpm
XPEAK 1720.2	Kev	2.10E-01	8.10E+01	0.00E+00	cpm
XPEAK 1730.5	Kev	2.40E-01	6.56E+01	0.00E+00	cpm
XPEAK 1742.7	Kev	1.15E-01	1.11E+02	0.00E+00	cpm
XPEAK 1749.3	Kev	8.50E-02	1.44E+02	0.00E+00	cpm
XPEAK 1847.8	Kev	1.65E-01	6.56E+01	0.00E+00	cpm

** ANALYSIS: H20 SOIL H20 IN SOIL

H-3 TRITIUM 6.80E-06 5.36E+00 2.34E-07 uCi/g

PACKET D5089 ITEM 3 SAMPLE 80984 ID= WELL PM-2 B-30-CM SAMPLING DATE 111993 -COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml

ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 6.85E+02 PROCESSED ON 113093

***** RESI	JLT **********	% ERROR	DET LIMIT	UNITS
AM241 CO60 CS137 EU152 EU154 K 40 RA226 TH228 TH232 XPEAK 651.4 Kev XPEAK 770.3 Kev XPEAK 1027.9 Kev XPEAK 1523.0 Kev XPEAK 1523.0 Kev XPEAK 1638.7 Kev XPEAK 1749.0 Kev XPEAK 1757.0 Kev XPEAK 1951.8 Kev XPEAK 1960.4 Kev	6.16E-07 2.54E-07 1.16E-06 6.36E-07 5.73E-07 4.20E-05 9.09E-07 2.48E-06 2.00E-06 4.10E-01 8.75E-01 2.60E-01 1.10E-01 1.60E-01 1.50E-01 8.50E-02 1.45E-01 1.65E-01	3.38E+01 2.75E+01 1.34E+01 3.14E+01 3.86E+01 9.96E+00 1.90E+01 1.23E+01 1.77E+01 9.13E+01 4.54E+01 1.03E+02 1.12E+02 7.83E+01 5.23E+01 9.20E+01 7.05E+01 6.30E+01	1.47E-07 3.86E-08 4.71E-08 1.31E-07 1.52E-07 2.97E-07 7.66E-08 8.58E-08 1.51E-07 0.00E+00	uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g cpm cpm cpm cpm cpm cpm cpm
				-

** ANALYSIS: H2O SOIL H2O IN SOIL

50 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

4

Page

IN PROCESS **

IN PROCESS **

5

Page

EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5089 ITEM 4 ID= WELL PM-2 C-SURFACE SAMPLING DATE 111993 -SAMPLE 80986 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml H-3 TRITIUM ANALYSIS= PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 % ERROR DET LIMIT UNITS H-3 TRITIUM 6.45E-065.38E+00 2.23E-07 uCi/q PACKET D5089 ITEM 4 SAMPLING DATE 111993 -ID= WELL PM-2 C-SURFACE SAMPLE 80986 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 6.86E+02 PROCESSED ON 113093 *********** RESULT *********** % ERROR DET LIMIT UNITS uCi/q 9.74E+002.95E-07 AM241 1.48E-05 uCi/g CO60 3.76E-06 1.05E+01 5.78E-08 8.87E-07 1.81E+018.15E-08 uCi/g CS137 1.50E+01 6.57E-08 uCi/g 9.89E-07 EU150 1.34E-05 9.84E+00 2.45E-07 uCi/g EU152 1.98E-07 1.10E-05 1.06E+01 EU154 uCi/g uCi/g K 40 3.67E-05 1.03E+01 3.86E-07 2.33E+01 RA226 1.16E-06 1.50E-07 uCi/q uCi/q **TH228** 2.48E-06 1.51E+011.58E-07 2.31E-06 2.38E+01 3.21E-07 TH232 uCi/q 6.85E+01 0.00E+00 XPEAK 92.9 Kev 2.97E+00cpm 146.2 Kev 1.12E+00 1.12E+020.00E+00 XPEAK cpm XPEAK 209.6 Kev 3.03E+00 5.15E+01 0.00E+00 cpm 270.3 Kev 2.19E+00 6.65E+01 0.00E+00 XPEAK cpm 328.4 Kev 8.57E+01 0.00E+00 XPEAK 1.32E+00cpm XPEAK 367.5 Kev 1.56E+005.69E+01 0.00E+00 cpm 433.9 Kev XPEAK 1.13E+008.39E+01 0.00E+00 cpm XPEAK 503.9 Kev 7.85E-01 1.12E+02 0.00E+00 cpm XPEAK 845.6 Kev 1.20E+00 6.54E+01 0.00E+00 cpm XPEAK 933.9 Kev 8.10E-01 8.82E+01 0.00E+00 cpm XPEAK 1046.7 Kev 0.00E+00 1.18E+00 6.17E+01 cpm XPEAK 1128.5 Kev 9.55E-01 6.44E+01 0.00E+00 cpm XPEAK 1236.6 Kev 6.33E+01 0.00E+00 8.75E-01 cpm XPEAK 1246.5 Kev 5.25E-01 7.57E+01 0.00E+00 cpm XPEAK 1378.4 Kev 5.45E-01 4.95E+01 0.00E+00 cpm XPEAK 1494.6 Kev 6.20E-01 3.96E+01 0.00E+00 cpm XPEAK 1588.5 Kev 1.95E-01 9.44E+01 0.00E+00 cpm XPEAK 1638.0 Kev 2.55E-01 5.42E+01 0.00E+00 cpm XPEAK 1650.6 Kev 1.05E-01 9.18E+01 0.00E+00 cpm XPEAK 1691.4 Kev 1.25E-01 1.12E+020.00E+00 cpm XPEAK 1720.4 Kev 3.30E-01 4.94E+01 0.00E+00 cpm XPEAK 1730.8 Kev 0.00E+00 2.45E-01 6.94E+01 cpm XPEAK 1803.1 Kev 2.25E-01 5.33E+01 0.00E+00 cpm

Sand An Stand Strate

· .-

. *.-

· · · · · · · · ·

- · ·

.

** LDAS SUMMARY REPORT ON 12-JAN-94 AT 07:42:53 **

Page EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5089 ITEM 4
 SAMPLE 80986
 ID=
 WELL PM-2
 C-SURFACE
 SAMPLING DATE 111993

 XPEAK 1840.3
 Kev
 1.75E-01
 5.57E+01
 0.00E+00

 XPEAK 1848.3
 Kev
 1.80E-01
 6.94E+01
 0.00E+00
 cpm cpm 1.20E-01 9.13E+01 XPEAK 1868.5 Kev 0.00E+00 cpm ** ANALYSIS: H20 SOIL H20 IN SOIL IN PROCESS ** PACKET D5089 ITEM 5 SAMPLE 80988 ID= WELL PM-2 C-30-CM SAMPLING DATE 111993 -COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 UNITS H-3 TRITIUM 2.38E-05 3.01E+00 3.34E-07 uCi/q PACKET D5089 ITEM 5 SAMPLE 80988 ID= WELL PM-2 C-30-CM SAMPLING DATE 111993 -COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 2.08E+02 PROCESSED ON 113093 ************ RESULT *********** 🗞 ERROR DET LIMIT UNITS CS137 6.14E-08 5.10E+01 2.42E-08 uCi/g K 40 1.51E-06 3.65E+01 2.68E-07 uCi/g RA226 1.69E-07 4.65E+01 4.61E-08 uCi/g 2.64E-07 3.29E+01 4.12E-08 2.76E-07 4.37E+01 8.56E-08 6.55E-01 9.09E+01 0.00E+00 TH228 uCi/g TH232 uCi/g XPEAK 92.5 Kev cpm XPEAK 151.2 Kev 5.45E-01 8.33E+01 0.00E+00 cpm XPEAK 631.8 Kev 2.05E-01 7.56E+01 0.00E+00 cpm 1.60E-01 1.16E+02 0.00E+00 1.15E-01 1.17E+02 0.00E+00 XPEAK 652.6 Kev cpm XPEAK 684.2 Kev cpm XPEAK 787.1 Kev 2.35E-01 9.31E+01 0.00E+00 cpm

 2.35E-01
 9.31E+01
 0.00E+00

 2.15E-01
 6.24E+01
 0.00E+00

 1.05E-01
 1.19E+02
 0.00E+00

 1.35E-01
 7.80E+01
 0.00E+00

 9.00E-02
 1.21E+02
 0.00E+00

 8.50E-02
 7.53E+01
 0.00E+00

 6.00E-02
 9.05E+01
 0.00E+00

 1.10E-01
 7.16E+01
 0.00E+00

 7.50E-02
 9.43E+01
 0.00E+00

 7.50E-02
 8.34E+01
 0.00E+00

 XPEAK 1003.4 Kev cpm XPEAK 1064.0 Kev cpm XPEAK 1238.7 Kev cpm XPEAK 1409.9 Kev cpm XPEAK 1485.7 Kev cpm XPEAK 1731.2 Kev CDW XPEAK 1747.9 Kev cpm XPEAK 1951.8 Kev cpm XPEAK 1960.9 Kev 7.50E-02 8.34E+01 0.00E+00 cpm

** ANALYSIS: H20 SOIL H20 IN SOIL

IN PROCESS **

52 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

Page EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5090 ITEM 0 SAMPLE 80990 ID= WELL PM-2 D-SURFACE SAMPLING DATE 111993 -COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 ************ RESULT *********** * ERROR DET LIMIT UNITS H-3 TRITIUM 1.70E-05 2.96E+00 2.34E-07 uCi/g PACKET D5090 ITEM 0 SAMPLE 80990 ID= WELL PM-2 D-SURFACE SAMPLING DATE 111993 -COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 7.87E+02 PROCESSED ON 113093 % ERROR DET LIMIT UNITS AM241 9.09E-06 1.09E+01 2.67E-07 uCi/q CO60 2.80E-06 1.10E+014.83E-08 uCi/g CS137 8.01E-07 uCi/g 1.94E+017.87E-08 EU150 7.31E-07 1.78E+01 6.38E-08 uCi/g EU152 8.42E-06 1.08E+01 2.19E-07 uCi/g EU154 7.18E-06 1.15E+011.72E-07 uCi/g K 40 9.90E+00 4.44E-05 3.70E-07 uCi/q RA226 8.71E-07 2.61E+011.33E-07 uCi/g 1.49E+01 **TH228** 2.35E-06 1.44E-07 uCi/g TH232 2.10E-06 2.48E+01 2.95E-07 uCi/g XPEAK 145.4 Kev 7.65E-01 1.78E+02 0.00E+00 cpm XPEAK 175.2 Kev 0.00E+00 1.22E+001.21E+02cpm XPEAK 209.0 Kev 2.10E+00 6.74E+01 0.00E+00 cpm 258.5 Kev XPEAK 1.54E+007.45E+01 0.00E+00 cpm XPEAK 270.3 Kev 2.77E+00 4.66E+01 0.00E+00 Cpm 327.5 Kev XPEAK 8.55E-01 1.02E+020.00E+00 cpm XPEAK 367.6 Kev 1.11E+00 7.07E+01 0.00E+00 cpm 433.9 Kev XPEAK 1.72E+004.79E+01 0.00E+00 cpm XPEAK 454.1 Kev 1.48E+00 6.01E+01 0.00E+00 Cpm XPEAK 546.6 Kev 6.40E-01 1.30E+02 0.00E+00 cpm XPEAK 713.7 Kev 1.12E+006.51E+01 0.00E+00 cpm 904.0 Kev XPEAK 8.15E-01 7.91E+01 0.00E+00 cpm XPEAK 989.9 Kev 3.65E-01 1.22E+02 0.00E+00 cpm XPEAK 1128.8 Kev 8.20E-01 7.31E+01 0.00E+00 Cpm XPEAK 1246.4 Kev 5.40E-01 8.08E+01 0.00E+00 cpm XPEAK 1378.3 Kev 3.40E-01 5.94E+01 0.00E+00 cpm XPEAK 1397.8 Kev 5.10E-01 4.27E+01 0.00E+00 cpm XPEAK 1495.3 Kev 5.15E-01 4.10E+01 0.00E+00 cpm XPEAK 1529.5 Kev 4.05E-01 4.55E+01 0.00E+00 cpm XPEAK 1631.7 Kev 3.05E-01 4.93E+01 0.00E+00 cpm XPEAK 1639.9 Kev 1.55E-01 9.81E+01 0.00E+00 cpm XPEAK 1680.4 Kev 1.10E-01 8.23E+01 0.00E+00 cpm XPEAK 1720.6 Kev 1.70E-01 9.20E+01 0.00E+00 cpm

50.0

APPENDIX C 53

a

** LDAS SUMM	ARY REPORT ON 1	2-JAN-94 A1	C 07:42:53 **	
PROJECT: RES EVENT/PROG TYPE: SOIL GROSS (500		TAL SURVEII	LANCE SPECIA	Page 8 L STUDIES
PACKET D5090 ITEM 0 SAMPLE 80990 ID= WELL P XPEAK 1848.6 Kev XPEAK 1952.3 Kev	2.40E-01	4.90E+01	0.00E+00	cpm
** ANALYSIS: H20_SOIL H20	IN SOIL			IN PROCESS **
PACKET D5090 ITEM 1 SAMPLE 80992 ID= WELL P COMMENT ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA=	H-3 MDA SHOU	ILD BE 3.E-7	7 uCi/ml	
*********** RESULT	* * * * * * * * * * * * *	% ERROR	DET LIMIT	UNITS
H-3 TRITIUM	5.07E-07	9.03E+01	4.56E-07	uCi/g
PACKET D5090 ITEM 1 SAMPLE 80992 ID= WELL P COMMENT ANALYSIS= GAMMA PARAMETER= 00816 SIGMA=	H-3 MDA SHOU	NLD BE 3.E-7	7 uCi/ml	
************ RESULT	* * * * * * * * * * * * *	% ERROR	DET LIMIT	UNITS
AM241 CO60 CS137 EU150 EU152 EU154 K 40 RA226 TH228 TH232 XPEAK 92.8 Kev XPEAK 517.6 Kev XPEAK 737.4 Kev XPEAK 737.4 Kev XPEAK 770.7 Kev XPEAK 770.7 Kev XPEAK 930.3 Kev XPEAK 1067.2 Kev XPEAK 1067.2 Kev XPEAK 1377.9 Kev XPEAK 1398.5 Kev XPEAK 1398.5 Kev XPEAK 1544.8 Kev XPEAK 1609.1 Kev XPEAK 1730.7 Kev	3.83E-06 1.18E-06 7.47E-07 3.13E-07 3.45E-06 2.97E-06 4.22E-05 8.28E-07 2.17E-06 2.09E-06 1.52E+00 7.05E-01 6.15E-01 1.14E+00 7.30E-01 4.55E-01 4.00E-01 3.35E-01 2.10E-01 1.65E-01 8.00E-02 2.40E-01	1.29E+01 1.40E+01 1.73E+01 2.50E+01 1.36E+01 1.51E+01 9.95E+00 2.31E+01 1.42E+01 1.42E+01 1.84E+01 8.87E+01 7.79E+01 8.59E+01 5.28E+01 5.96E+01 7.74E+01 8.38E+01 7.74E+01 5.59E+01 9.59E+01 5.46E+01 1.23E+02 4.97E+01	1.81E-07 $4.77E-08$ $5.74E-08$ $4.71E-08$ $1.65E-07$ $1.59E-07$ $3.15E-07$ $1.02E-07$ $1.18E-07$ $1.85E-07$ $0.00E+00$	uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm

** ANALYSIS: H20_SOIL H20 IN SOIL

IN PROCESS **

54 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

ł

9

Page

EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5090 ITEM 2 SAMPLING DATE 111993 -SAMPLE 80994 ID= WELL PM-2 E-SURFACE COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml TRITIUM ANALYSIS= H-3 PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 *********** RESULT *********** % ERROR DET LIMIT UNITS 6.44E+00 uCi/q H-3 TRITIUM 5.25E-06 2.34E-07 PACKET D5090 ITEM 2 SAMPLING DATE 111993 -SAMPLE 80994 ID= WELL PM-2 E-SURFACE COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 5.90E+02 PROCESSED ON 113093 % ERROR DET LIMIT UNITS 1.39E-05 9.49E+00 2.37E-07 uCi/g AM241 uCi/g 2.55E-06 1.12E+01 4.52E-08 C060 1.06E-06 1.62E+01 7.36E-08 uCi/g CS137 uCi/g 7.17E-07 1.72E+01 5.88E-08 EU150 1.00E-05 1.02E+01 2.04E-07 uCi/g EU152 7.77E-06 1.14E+01 1.82E-07 uCi/g EU154 3.74E-05 1.03E+01 3.63E-07 uCi/g K 40 uCi/g 8.81E-07 2.45E+01 1.22E-07 RA226 1.29E-07 2.07E-06 1.51E+01 uCi/g TH228 2.34E+01 2.55E-07 uCi/g TH232 1.81E-06 XPEAK 161.6 Kev 2.24E+00 6.08E+01 0.00E+00 cpm XPEAK 209.1 Kev 2.17E+00 4.89E+01 0.00E+00 cpm 270.4 Kev 1.60E+00 6.49E+01 0.00E+00 XPEAK cpm 7.34E+01 327.9 Kev 0.00E+00 XPEAK 1.44E+00 cpm 1.72E+00 XPEAK 433.9 Kev 5.02E+01 0.00E+00 cpm XPEAK 626.0 Kev 6.40E-01 9.92E+01 0.00E+00 cpm XPEAK 846.2 Kev 8.15E-01 8.15E+01 0.00E+00 cpm XPEAK 880.8 Kev 6.20E-01 1.14E+02 0.00E+00 cpm 893.6 Kev XPEAK 6.10E-01 1.03E+02 0.00E+00 cpm 904.2 Kev 8.45E+01 0.00E+00 XPEAK 6.70E-01 cpm XPEAK 948.2 Kev 8.90E-01 6.64E+01 0.00E+00 cpm 4.35E+01 XPEAK 1122.4 Kev 0.00E+00 1.35E+00 cpm XPEAK 1222.3 Kev 6.65E-01 6.16E+01 0.00E+00 cpm XPEAK 1246.5 Kev 4.30E-01 1.02E+02 0.00E+00 cpm XPEAK 1317.2 Kev 5.35E+01 0.00E+00 5.45E-01 cpm XPEAK 1428.1 Kev 6.40E+01 0.00E+00 3.30E-01 cpm XPEAK 1446.2 Kev 4.82E+01 0.00E+00 4.60E-01 cpm XPEAK 1609.3 Kev 1.20E-01 1.02E+02 0.00E+00 cpm XPEAK 1631.2 Kev 2.35E-01 5.50E+01 0.00E+00 cpm XPEAK 1644.4 Kev 0.00E+00 1.10E-01 1.08E+02 cpm XPEAK 1720.5 Kev 2.75E-01 5.33E+01 0.00E+00 cpm 1.31E+02 0.00E+00 XPEAK 1758.1 Kev 8.00E-02 cpm

1.20E-01

7.07E+01

** ANALYSIS: H20_SOIL H20 IN SOIL

Se 1 .

XPEAK 1984.5 Kev

IN PROCESS **

cpm

APPENDIX C 55

0.00E+00

** LDAS SUMMARY	REPORT ON 1	2-JAN-94 AT	07:42:53 **	Dago
PROJECT: RES EVENT/PROGRAM: TYPE: SOIL GROSS (500 ML E		TAL SURVEIL	LANCE SPECIAL	Page STUDIES
PACKET D5090 ITEM 3 SAMPLE 80996 ID= WELL PM-2 COMMENT H				
ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.0	SIZE= 1.00	E+01 PROC	ESSED ON 1220	93
****************** RESULT ***	****	& ERROR	DET LIMIT	UNITS
H-3 TRITIUM	4.38E-05	1.77E+00	2.45E-07	uCi/g
PACKET D5090 ITEM 3 SAMPLE 80996 ID= WELL PM-2 COMMENT H ANALYSIS= GAMMA				
PARAMETER= 00816 SIGMA= 2.0	SIZE= 5.692	E+02 PROC	ESSED ON 1130	93
************** RESULT ***	*****	% ERROR	DET LIMIT	UNITS
EU152 EU154 K 40 RA226 TH228 TH232 XPEAK 106.8 Kev XPEAK 517.9 Kev XPEAK 677.3 Kev XPEAK 783.7 Kev XPEAK 932.5 Kev XPEAK 1086.8 Kev XPEAK 1086.8 Kev XPEAK 1111.7 Kev XPEAK 1111.7 Kev XPEAK 1343.9 Kev XPEAK 1343.9 Kev XPEAK 1497.0 Kev XPEAK 1558.4 Kev XPEAK 1558.4 Kev XPEAK 1558.4 Kev XPEAK 1662.7 Kev XPEAK 1682.8 Kev XPEAK 1694.2 Kev XPEAK 1742.4 Kev	3.70E-01 4.65E-01 4.65E-01 1.90E-01 3.75E-01 3.70E-01 3.20E-01 7.50E-02 1.50E-01 1.15E-01 1.60E-01 1.05E-01 6.00E-02	5.63E+01 5.70E+01 6.15E+01 1.06E+02 8.15E+01 4.67E+01 7.66E+01 4.00E+01 1.25E+02 7.60E+01 8.61E+01 8.61E+01 8.57E+01 9.13E+01	7.21E-08 1.37E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm
XPEAK 1878.8 Kev XPEAK 1893.2 Kev XPEAK 1900.5 Kev XPEAK 1952.6 Kev	1.60E-01 9.50E-02 1.60E-01 1.45E-01	5.30E+01 6.94E+01 5.64E+01 7.30E+01	0.00E+00 0.00E+00 0.00E+00 0.00E+00	cpm cpm cpm

** ANALYSIS: H20_SOIL H20 IN SOIL

IN PROCESS **

56 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

te su

Page 11

EVENT/PROGRAM: ENVIRONMENTAL SURVEILLANCE SPECIAL STUDIES PROJECT: RES TYPE: SOIL GROSS (500 ML BOTTLE) PACKET D5090 ITEM 4 SAMPLING DATE 111993 -ID= WELL PM-2 F-SURFACE SAMPLE 80998 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml H-3 TRITIUM ANALYSIS= PARAMETER= 67861 SIGMA= 2.0 SIZE= 1.00E+01 PROCESSED ON 122093 % ERROR DET LIMIT UNITS 2.34E-07 uCi/q 3.47E-06 8.81E+00 H-3 TRITIUM PACKET D5090 ITEM 4 ID= WELL PM-2 F-SURFACE SAMPLING DATE 111993 -SAMPLE 80998 COMMENT -- H-3 MDA SHOULD BE 3.E-7 uCi/ml ANALYSIS= GAMMA PARAMETER= 00816 SIGMA= 2.0 SIZE= 5.68E+02 PROCESSED ON 113093 UNITS ℅ ERROR DET LIMIT 9.36E+00 3.41E-07 uCi/q 2.00E-05 AM241 uCi/g 9.64E+00 5.85E-08 6.23E-06 CO60 uCi/g 1.31E-06 1.72E+01 1.06E-07 CS137 uCi/g 8.50E-08 1.81E-06 1.30E+01 EU150 2.09E-05 9.23E+00 2.92E-07 uCi/g EU152 uCi/g 9.74E+00 2.08E-07 1.73E-05 EU154 4.03E-07 uCi/g 3.68E-05 1.03E+01 K 40 uCi/g 1.88E-07 1.02E-06 2.95E+01 RA226 2.04E+01 1.95E-07 uCi/g 1.77E-06 TH228 3.86E-07 uCi/g 2.14E-06 2.83E+01 TH232 0.00E+00 92.5 Kev 3.49E+00 6.82E+01 cpm XPEAK 9.34E+01 0.00E+00 cpm 176.5 Kev 1.42E+00XPEAK 7.26E+01 0.00E+00 269.8 Kev 2.06E+00 cpm XPEAK 0.00E+00 1.79E+00 8.50E+01 cpm XPEAK 306.1 Kev 0.00E+00 1.40E+02XPEAK 422.9 Kev 6.60E-01 cpm 0.00E+00 565.0 Kev 2.06E+00 5.58E+01 cpm XPEAK 714.5 Kev 1.03E+00 8.59E+01 0.00E+00 cpm XPEAK 9.35E-01 8.76E+01 0.00E+00 cpm 816.6 Kev XPEAK 8.91E+01 0.00E+00 839.9 Kev 9.05E-01 cpm XPEAK 0.00E+00 1.04E+00 8.37E+01 cpm 919.8 Kev XPEAK 0.00E+00 8.66E+01 XPEAK 1153.9 Kev 7.25E-01 cpm 0.00E+00 XPEAK 1233.9 Kev 5.75E-01 9.38E+01 cpm XPEAK 1378.4 Kev 3.80E-01 7.59E+01 0.00E+00 cpm XPEAK 1448.2 Kev 3.50E-01 5.92E+01 0.00E+00 cpm XPEAK 1538.9 Kev 0.00E+00 5.98E+01 cpm 2.85E-01 0.00E+00 3.05E-01 5.40E+01 cpm XPEAK 1619.0 Kev 0.00E+00 1.10E-01 1.02E+02cpm XPEAK 1692.3 Kev 0.00E+00 XPEAK 1730.8 Kev 1.70E-01 7.58E+01 cpm XPEAK 1798.3 Kev 1.10E+020.00E+00 cpm 7.50E-02 5.54E+01 0.00E+00 2.15E-01 cpm XPEAK 1821.1 Kev 0.00E+00 XPEAK 1839.5 Kev 2.30E-01 5.61E+01 cpm 2.45E-01 5.31E+01 0.00E+00 cpm XPEAK 1848.8 Kev 0.00E+00 1.55E-01 8.44E+01 cpm XPEAK 1951.8 Kev

** ANALYSIS: H20 SOIL H20 IN SOIL

IN PROCESS **

.

APPENDIX C 57

** LDAS SUMMARY REPORT ON 12-JAN-94 AT 07:42:53 **					
PROJECT: RES EVENT/PROGRAM TYPE: SOIL GROSS (500 ML		TAL SURVEII	LANCE SPECIA	Page L STUDIES	
PACKET D5090 ITEM 5 SAMPLE 81000 ID= WELL PM-2 COMMENT	F-30-CM H-3 MDA SHOU				
ANALYSIS= H-3 TRITIUM PARAMETER= 67861 SIGMA= 2.	0 SIZE= 1.00	E+01 PROC	CESSED ON 122	093	
**************** RESULT **	*****	% ERROR	DET LIMIT	UNITS	
H-3 TRITIUM	5.18E-06	6.74E+00	2.45E-07	uCi/g	
PACKET D5090 ITEM 5 SAMPLE 81000 ID= WELL PM-2 COMMENT ANALYSIS= GAMMA	F-30-CM H-3 MDA SHOU		DATE 111993 - 7 uCi/ml		
PARAMETER= 00816 SIGMA= 2.	0 SIZE= 6.20	E+02 PROC	ESSED ON 113	093	
*************** RESULT **	*****	% ERROR	DET LIMIT	UNITS	
EU154 K 40 RA226 TH228 TH232 XPEAK 105.4 Kev XPEAK 372.8 Kev XPEAK 395.5 Kev XPEAK 433.8 Kev XPEAK 639.1 Kev XPEAK 639.1 Kev XPEAK 806.0 Kev XPEAK 837.9 Kev XPEAK 837.9 Kev XPEAK 981.0 Kev XPEAK 1064.7 Kev XPEAK 1155.9 Kev XPEAK 1185.5 Kev XPEAK 1402.0 Kev XPEAK 1510.1 Kev XPEAK 1514.3 Kev	1.71E-07 2.84E-07 4.63E-07 4.37E-07 2.61E-05 1.90E-06 2.14E-06 1.80E-06 1.49E+00 4.40E-01	$\begin{array}{c} 4.13E+01\\ 1.09E+01\\ 1.31E+01\\ 1.27E+01\\ 1.92E+01\\ 6.81E+01\\ 1.12E+02\\ 6.27E+01\\ 8.53E+01\\ 7.34E+01\\ 5.66E+01\\ 6.68E+01\\ 7.99E+01\\ 1.02E+02\\ 5.50E+01\\ 7.97E+01\\ 8.19E+01\\ 8.19E+01\\ 6.83E+01\\ 9.83E+01\\ \end{array}$	3.78E-08 3.88E-08 1.31E-07 1.25E-07 2.82E-07 6.28E-08 7.93E-08 1.52E-07 0.00E+00	uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g uCi/g cpm cpm cpm cpm cpm cpm cpm cpm cpm cpm	
XPEAK 1622.0 Kev XPEAK 1730.5 Kev XPEAK 1848.4 Kev	3.30E-01 2.65E-01	9.34E+01 4.56E+01 6.00E+01	0.00E+00 0.00E+00 0.00E+00	cpm cpm cpm	

** ANALYSIS: H20_SOIL H20 IN SOIL

IN PROCESS **

12

***** End of Report *****

58 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

APPENDIX D. Summary of Hydrologic Testing at Well PM-2

The information contained in Appendix D was provided from original field notes (R.K. Blankennagel, written commun., 1964).

Ζ,

APPENDIX D 59

•

SALINOMETER TEST 7/11/64

Original depth to water: 1,260' Depth to bridge: 4,070' Added 125 lbs. salt /40 bbl water

Run #1 Brine in at 0615 Salinometer run at 0800 Salt/fresh Interface SWL = 1,260' WL = 905' reversal at 1800' from fresh to salt back to fresh at 2,330' back to salt at 3,630'

Run #2 Brine in after brine injection: WL 1 1/4 hours after injection SWL =1,260' WL =910' (0800) WL =920' (0915)

SWABBING TESTS 07/12/64

Specific capacity (gpm/foot of drawdown) not determined because water level continued to decline throughout swabbing period. Swabbing tests proved unnecessary and undesirable

INJECTION TESTS

Injection test were run on 5 zones believed to be most permeable.

Interval injected, in feet	Relative Specific Capacity
2,528-2,726	.01
2,818-3,016	0.00
3,168-3,366	.00
3,441-3,639	.02
3,720-3,918	.00

TRACEJECTOR TESTS 07/13/64

Tracejector test included the use of Iodine 131 at a concentration of 5 millicuries per 7 milliliters. Records indicate nuclide was emptied from casing at end of test.

Depth, in feet	2,450	2,574	2,896	3,190	3,336	3,560	3,650	3,760	3,896	3,950
Flow rate, in gpm	1.3	0.5	1.26	0.9	1.7	0.97	1.1	1.6	1.3	2.3

60 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

APPENDIX E. Summary of Water-Quality Data for Well PM-2 from Lawrence Livermore National Laboratory

The information contained in Appendix E was provided by Lawrence Livermore National Laboratory. It is presented in the format provided to the USGS.

PRELIMINARY DATA SUBJECT TO REVISION

Well PM-2 Nevada Test Site LLNL-HRMP Data

· · · · · · · · · · · · · · · · · · ·		•••		SAMPLE D	ATES: Nov	ember 29th	-December	1st, 1993					
SAN	PLE	Tri	tium	GAMMA SPECTRAL (Ba/L)									
	РТН		q/L)	60	Co	12	7Cs 226Ra						
		•		Unfiltered	10000 M.W.	Unfiltered	10000 M.W.	Unfiltered	10000 M.W.	Unfiltered	10000 M.W.		
Feet	Meters	Field	Laboratory		Filter	Water	Filter	Water	Filter	Water	<u>Filter</u>		
1000			9.37E+02	<1.10E-02	not detected	<3.18E-02	not detected	<1.10E-02	not detected	6.15E-01	6.67E-02		
2000	610	2.72E+04	2.63E+04	<1.67E-02	not detected	<4.48E-02	not detected	<1.77E-02	not detected	<3.78E-02	not detected		
2700	823	2.20E+04	2.29E+04	<1.43E-02	not detected	<3.69E-02	not detected	<1.45E-02	not detected	8.78E-02	not detected		
3000	915	1.96E+04	2.14E+04	<1.25E-02	not detected	<3.81E-02	not detected	<1.59E-02	not detected	<3.07E-02	not detected		
SAW	IPLE	14C	36CI	90Sr	3He	4He	3He/3H	Gross	Gross	238Pu	239Pu		
DE	ртн	(Bq/L)	(Bq/L)	(Bq/L)	atoms	atoms	Age	Alpha	Beta	(Bq/L)	(Bq/L)		
Feet	Meters	· · · · · · · · · · · · · · · · · · ·					(days)	(Bq/L)	(Bq/L)				
1000	305	2.50E+02	1.52E-04	<1.9E-02		••		<1.3	<2.6	<2.0E-03	<2.0E-03		
2000	610	2.00E+02	2.22E-05	<2.6E-02	7.86E+09	1.75E+14	3348	<1.3	<2.6	<2.8E-03	<1.4E-03		
2700	823	1.00E+02		<2.3E-01	••		••	<1.3	<2.6	<3.9E-03	<2.1E-03		
3000	915	1.63E+03	2.00E-05	<1.4E-01	5.36E+09	1.43E+14	3162	<1.3	<2.6	4.56E-03	<2.4E-03		
	Ľ)etectable \	olatile and	Semi-volati	le Organic	Compounds							
100	00 ft (3	05 m)				2000 ft							
	Benzene			4.2		VOC's	and Semi's	not detected					
	Chlorom	ethane		2									
	Methyl c			0.3		[
	TCE 1,1			0.5									
	Dimethy	l ether		20									
270		<u>23 m)</u>											
	Carbon			0.5	·								
	TCE 1,1 Dimethy			20									
	4 Methy												
		ipnenoi yl phthalate		<u>190</u> 21	(detection (onfirmed, v	l Indua actima	tod)					
		yr phinaiaie thylhexylph		35		confirmed, v							
	1013 (2*0		malatoj										
300	00 ft (9	15 m)											
	4 Methy			120									
	A	yl phthalate)	18	(detection	confirmed, v	alue estima	ted)					
		thylhexylph		25	(detection	confirmed, v	alue estima	ted)					

. .

62

· ,

÷

PRELIMINARY DATA SUBJECT TO REVISION

Well PM-2 Nevada Test Site LLNL-HRMP Data

							0.41		5: May 3-4, 1	004						
SAM		Triti					JAN	IFLE DATES		MA SPECTR	AL (Ball)					
DEF		(8q			60Co		[125Sb	GAM	INA OPEOIN	<u>137Cs</u>			226Ra		238+239Pu
		(54	,,	Unfiltered		10000 M.W.	Unfiltered	Filtered	10000 M.W.	Unfiltered	Filtered	10000 M.W.	Unfiltered		10000 M.W.	Unfiltered
Feet	Meters	Field	Laboratory	Water	Water	Filter	Water	Water	Eilter	Water	Water	Filter	Water	Water	<u>Filter</u>	Water
1000	305	not detected	7.56E+02	<8.93E-03	<1.21E-03	not detected	<2.75E-02	{0.0168}	not detected	<1.00E-02		not detected	1.23E-01		3.78E-02	<2.5E-04
2700	823	2.09E+04	2.46E+04	<9.00E-03	<1.48<-03	not detected	<2.26E-02	<3.70E-03	not detected	<9.56E-03	3.49E-02	not detected			not detected	1.63E-03
3000	915	not measured	2.16E+04	<1.47E-02	<2.06E-03	not detected	<4.11E-02	<4.47E-03	not detected	<1.56E-02	<2.07E-03	not detected	<3.15E-02	<3.78E-03	2.56E-02	4.33E-03
									ently being c			very prelimin				

:

1.

PRELIMINARY DATA SUBJECT TO REVISION

•

Well PM-2 Nevada Test Site LLNL-HRMP Data

	Sample									ecember		13				
1000 305 <0.06 <0.06 6.0 0.91 26 0.19 0.2 2.8 5.2 0.3 <0.1 2.30 2000 610 <0.06 0.73 2.1 0.50 1161 1.29 <0.1 17.6 10.5 5.6 0.1 ??? 2700 823 <0.06 0.72 4.4 0.97 1114 1.22 0.3 19.1 10.4 5.7 0.1 ??? 3000 915 0.14 0.73 4.0 0.81 1557 2.40 0.3 17.3 10.7 6.1 <0.1 ??? 3000 915 0.14 0.73 4.0 0.81 1557 2.40 0.3 17.3 10.7 6.1 <0.1 ???? Sample Depth TRACE METALS (ug/L) Feet Meters Cr Mn Ni Co Cu Zn As Se Sr Mo Ba Hg Pb 1000 305 0.2 124.5 <0.1 <0.1 5.4 75.9 <				<u>.</u>						Y						
2000 610 <0.06			-						-							
2700 823 <0.06																
3000 915 0.14 0.73 4.0 0.81 1557 2.40 0.3 17.3 10.7 6.1 <0.1																
Sample Depth Foet Maters Cr Mn Ni Co Cu Zn As Se Sr Mo Ba Hg Pb 1000 305 0.2 124.5 <0.1 <0.1 5.4 75.9 2.9 7.9 208.7 10.6 249.7 <0.5 0.6 2000 610 109.1 16.1 7.1 0.5 94.2 105.8 11.2 127.0 353.2 266.5 297.8 7.9 16.2 2700 823 107.3 35.0 6.2 0.5 90.5 48.8 7.2 71.0 516.0 258.6 390.5 7.9 10.5 3000 915 93.9 74.8 18.0 0.9 54.3 132.1 11.0 118.1 681.2 264.8 462.1 9.8 23.7															X 000000000000000000000000000000000000	
Feet Meters Cr Mn Ni Co Cu Zn As Se Sr Mo Ba Hg Pb 1000 305 0.2 124.5 <0.1 <0.1 5.4 75.9 2.9 7.9 208.7 10.6 249.7 <0.5 0.6 2000 610 109.1 16.1 7.1 0.5 94.2 105.8 11.2 127.0 353.2 266.5 297.8 7.9 16.2 2700 823 107.3 35.0 6.2 0.5 90.5 48.8 7.2 71.0 516.0 258.6 390.5 7.9 10.5 3000 915 93.9 74.8 18.0 0.9 54.3 132.1 11.0 118.1 681.2 264.8 462.1 9.8 23.7			0.14	0.73	4.0	0.81	1557					6.1	<0.1	???		
1000 305 0.2 124.5 <0.1	<u> </u>															
2000 610 109.1 16.1 7.1 0.5 94.2 105.8 11.2 127.0 353.2 266.5 297.8 7.9 16.2 2700 823 107.3 35.0 6.2 0.5 90.5 48.8 7.2 71.0 516.0 258.6 390.5 7.9 10.5 3000 915 93.9 74.8 18.0 0.9 54.3 132.1 11.0 118.1 681.2 264.8 462.1 9.8 23.7	<u>Feet</u>	<u>Meters</u>	ଫ	Mn	NI	Co	Cu	Zn	As	Se	Sr	Мо	Ba	Hg	Pb	(
2700 823 107.3 35.0 6.2 0.5 90.5 48.8 7.2 71.0 516.0 258.6 390.5 7.9 10.5 3000 915 93.9 74.8 18.0 0.9 54.3 132.1 11.0 118.1 681.2 264.8 462.1 9.8 23.7		305	0.2	124.5		<0.1			2.9	7.9	208.7	10.6	249.7	<0.5	0.6	<
3000 915 93.9 74.8 18.0 0.9 54.3 132.1 11.0 118.1 681.2 264.8 462.1 9.8 23.7	2000	610	109.1	16.1	7.1	0.5	94.2	105.8	11.2	127.0	353.2	266.5	297.8	7.9	16.2	
	2700				6.2	0.5	90.5	48.8	7.2	71.0	516.0	258.6	390.5	7.9	10.5	
`	3000	915	93.9	74.8	18.0	0.9	54.3	132.1	11.0	118.1	681.2	264.8	462.1	9.8	23.7	
						2 Solis Sa										
	Site	Depth	K-40		Ag-108m	Cs-137	Eu-152	Eu-154	Eu-155	Ra-226	Ra-228	Th-228	U-235	U-238	Am-241	
A Surface 28.7±2 2.46±1 0.12±9 0.852±2 7.56±1 7.02±1 1.09±6 1.51±4 1.51±4 1.76±7 0.6±29 1.51±20 10.7±4	Α	Surface	28.7±2	2.46±1	Ag-108m 0.12±9	Cs-137 0.852±2	Eu-152 7.56±1	Eu-154 7.02±1	Eu-155 1.09±6	Ra-226 1.51±4	Ra-228	Th-228 1.76±7	U-235 0.6±29	1.51±20	10.7±4	
A Surface 28.7±2 2.46±1 0.12±9 0.852±2 7.56±1 7.02±1 1.09±6 1.51±4 1.76±7 0.6±29 1.51±20 10.7±4 A#2 Surface 24.8±2 2.30±1 0.12±9 0.753±2 6.92±1 6.52±1 0.52±10 1.22±4 1.22±4 1.44±2 0.47±22	A A#2	Surface Surface	28.7±2 24.8±2	2.46±1 2.30±1	Ag-108m 0.12±9 0.12±9	Cs-137 0.852±2 0.753±2	Eu-152 7.56±1 6.92±1	Eu-154 7.02±1 6.52±1	Eu-155 1.09±6 0.52±10	Ra-226 1.51±4 1.22±4	Ra-228 1.51±4 1.22±4	Th-228 1.76±7 1.44±2	U-235 0.6±29 	1.51±20 	10.7±4 0.47±22	
A Surface 28.7±2 2.46±1 0.12±9 0.852±2 7.56±1 7.02±1 1.09±6 1.51±4 1.51±4 1.76±7 0.6±29 1.51±20 10.7±4 A#2 Surface 24.8±2 2.30±1 0.12±9 0.753±2 6.92±1 6.52±1 0.52±10 1.22±4 1.44±2 0.47±22 A 30cm 19.4±3 <0.018 0.07±27 <0.05 <0.03 <0.05 1.43±4 1.68±2 <2.2 <0.08	A A#2 A	Surface Surface 30cm	28.7±2 24.8±2 19.4±3	2.46±1 2.30±1 <0.018	Ag-108m 0.12±9 0.12±9 	Cs-137 0.852±2 0.753±2 0.07±27	Eu-152 7.56±1 6.92±1 <0.05	Eu-154 7.02±1 6.52±1 <0.03	Eu-155 1.09±6 0.52±10 <0.05	Ra-226 1.51±4 1.22±4 1.43±4	Ra-228 1.51±4 1.22±4 1.43±4	Th-228 1.76±7 1.44±2 1.68±2	U-235 0.6±29 	1.51±20 <2.2	10.7±4 0.47±22 <0.08	
A Surface 28.7±2 2.46±1 0.12±9 0.852±2 7.56±1 7.02±1 1.09±6 1.51±4 1.51±4 1.76±7 0.6±29 1.51±20 10.7±4 A#2 Surface 24.8±2 2.30±1 0.12±9 0.753±2 6.92±1 6.52±1 0.52±10 1.22±4 1.2±4 1.44±2 0.47±22	A A#2 A B	Surface Surface 30cm Surface	28.7±2 24.8±2 19.4±3 31.5±3	2.46±1 2.30±1 <0.018 3.86±1	Ag-108m 0.12±9 0.12±9 0.18±16	Cs-137 0.852±2 0.753±2 0.07±27 0.94±4	Eu-152 7.56±1 6.92±1 <0.05 12.0±1	Eu-154 7.02±1 6.52±1 <0.03 11.2±1	Eu-155 1.09±6 0.52±10 <0.05 1.76±7	Ra-226 1.51±4 1.22±4 1.43±4 0.77±6	Ra-228 1.51±4 1.22±4 1.43±4 1.60±7	Th-228 1.76±7 1.44±2 1.68±2 2.03±4	U-235 0.6±29 	1.51±20 <2.2 <0.87	10.7±4 0.47±22 <0.08 16.4±4	

,

LIST OF VOC and SEMI-VOC ANELYTES NTS WATER SAMPLES 1994 1995-1994

.

						0.2	trans-1,2-Dichloroethane
				S.0	m-Xylene and p-Xylene	6.0	cis-1,2-Dichloroethane
				5	Vinyl chloride	5.0	1,3-Dichloroethane
		37	Acenaphthene	1.0	Vinyl Acetate	6.0	1,2-Dichloroethane
12	Benzo(g,h,i)perylene	061	3-Nitroaniline	6.0	1,3,5-Trimethylbenzene	£.0	1.1-Dichloroethane
28	Dibenzo(a,h)anthracene	28	2,6-Dinitrotoluene	£.0	eneznedlydfemirT-4,S,t	ł	Dichlorodifluoromethane
28	Indeno(1,2,3-cd)pyrene	28	Acenzphthylene	9.0	1,2,3-Trichloropropane	6.0	1,4-Dichlorobenzene
28	Benzo(a)pyrene	32	Dimethyl phthalate	9.0	Trichlorofluoromethane	6.0	1,3-Dichlorobenzene
28	Benzo(k)fluoranthene	190	2-Nitroaniline	ð. 0	Trichloroethane	4.0	eneznedoroldoid-S, f
28	Benzo(b)fluoranthene	28	2-Methylnaphthalene	4.0	ensiteoroldoirT-S, t, t	6.0	Dibromoethane
28	Bis(2-ethylhexyl) phthalate	28	4-Chloro-3-methylphenol	1	f, t, t -Trichloroethane	6.0	1,S-Dibromoethane
28	Chrysene	28	Hexachlorobutadiene	4.0	A.2,4-Trichlorobenzene	G. 0	1,2-Dibromo-3-chloropropane
28	Benzo(a)anthrcene	28	4-Chloroaniline	£.0	aneznedoroldinT-E,S,t	4.0	Dibromochloromethane
7Z	3,3'-Dichlorobenzidine	28	0.08phalene		eneuloT	6.0	4-Chlorotoluene
28	Butyl benzyl phthalate	32	1,2,4-Trichlorobenzene	5.0	Tetrachloroethane	6.0	2-Chlorotoluene
28	Pyrene	28	2,4-Dichlorophenol	4.0	ensharoohosteT-S,S,T,T	1	Chloromethane
28	Fluoranthene	28	Bis-(2-chloroethoxy) methane	£.0	1,1,1,2-Tetrachloroethane	6.0	Chloroform
28	Di-n-butyl phthalate	061	Benzoic acid	£.0	Styrene	S.0	2-Chloroethyl vinyl ether
28	Anthracene	28	2,4-Dimethylphenol	ł	n-Propylbenzene	6.0	Chloroethane
28	Phenanthrene	32	2-Nitrophenol	4.0	Naphthalene		Chlorobenzene
061	Pentachlorophenol	28	lsophorone	9	4-Methyl-2-pentanone	5.0	Carbon tetrachloride
28	Hexachlorobenzene	32	Nitrobenzene	6.0	Methylene chloride		Carbon disulfide
28	4-Bromophenyl phenyl ether	28	Hexachloroethane	6.0	p-lsopropyitoluene		tert-Butylbenzene
061	4,6-Dinitro-2Methylphenol	28	n-nitrosodi-n-propylamine	6.0	isobropylbenzene	6.0	sec-Butylbenzene
061	4-Nitroaniline	28	S-Methylphenol	3	S-Hexanone	6.0	n-Butylbenzene
28	Fluorene	28	1,S-Dichlorobenzene	6.0	Hexachlorobutadiene		S-Butanone
28	4-chlorophenyl phenyl ether	28	Benzyl alcohol		Freon 113		Bromomethan
28	Diethyl phthalate	28	1,4-dichlorobenzene	6.0	Ethyl benzene		Bormotorm
28	2,4-Dinitrotoluene	28	1,3-dichlorobenzene	2.0	f.1-Dichloropropane		Bromodichloromethane
22	Dibenzofuran	28	2-Chlorophenol		12,S-Dichloropropane	6.0	Bromobenzene
061	4-Nitrophenol	28	Bis(2-choloethyl) ether	6.0	1,3-Dichloropropane	6.0	Benzene
061	2,4-Dinitrophenol		Phenol	6.0	1,2-Dichloropropane	10	enoteoA
(7/5n)	······································	(⁊/ɓn)		(⁊/ɓn)		(⁊/ɓn)	
MDL	СОМРОИИD	MDL	COWPOUND	שטר	COMPOUND	MDL	COWPOUND
	ORGANICS	AOLATILE	IWES		RGANICS	C 31ITAJ	ΟΛ

65

.

11

. '

ب ی

·2 ·

.

66 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

.

Ċ

APPENDIX F. Summary of Water-Quality Data for Well PM-2 from Reynolds Electrical & Engineering Company

The information contained in Appendix F was provided by Reynold Electrical & Engineering Co., Inc. It is presented in the format provided to the USGS.

APPENDIX F 67

То

Reynolds Electrical & Engineering Co., Inc.

MEMORANDUM

F. D. Ferate

From G. A. Clark STAC

Date November 18, 1993

Subject SAMPLE ANALYTICAL RESULTS

Enclosed are Analytical Services Department's results for the semivolatile organics and total metals analyses of one water sample collected on September 27, 1993, at Well PM-2 in Area 20.

Please direct any questions you may have about these results to Roger Mitchell (295-7220) or Jerry Dugas (295-7997).

GAC:RNL1282:rn

Enclosures As stated

cy: Central Files, w/o encls. A. R. Latham, w/o encls. L. S. Sygitowicz, w/o encls. ACS Packet No. 93-11-001, w/o encls.

REECo

TOTAL QUALITY IS OUR BUSINESS

AN SEGEG COMPANY

68 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

REECO ASD/ACS

REECO MISC REECO Order #: 93-11-001 Date: 11/18/93 15:18 Work ID: MTLS,BNA/LIQ; A20, RUSH! Date Received: 10/28/93 Date Completed: 11/18/93 2

Ţ

•

.

•

ø

Attn: FRED FERATE

Purchase Order: 1125-022 Invoice Number:

Client Code: REECO

REPORT TO FRED FERATE, REECO ASD.

SAMPLE IDENTIFICATION

Sample	Sample			
<u>Number</u>	Description			
01	C5682-3			
02	93-11-001-QC1	METHOD BLANK		
03	93-11-001-QC2	INFO_I		

Sample	Sample	
<u>Number</u>	Description	
04	93-11-001-QC3 DETEC. LIMIT	
05	93-11-001-CV INST CHK SPK	

Bet

ied By

APPENDIX F 69

Order # 93-11-001 11/18/93 15:18		REECO ASD/ACS TEST RESULTS BY SAMPLE	Page 2	
Sample Description: Test Description:		Lab No: Method:	•••	Test Code: ICPSCN
Collected:				Test Code: Tursum
PARAMETER		RESULT		

LITHIUM	0.15
BERYLLIUM	ND
BORON	0.51
SODIUM	1100
MAGNESIUM	0.35
ALUMINUM	0.13
PHOSPHORUS	0.26
TITANIUM	0.11
VANADIUM	0.017
CHROMIUM	0.069
MANGANESE	0.11
IRON	2.8
COBALT	ND
NICKEL	ND
COPPER	0.023
ZINC	0.14
ARSENIC	ND
SELENIUM	ND
STRONTIUM	0.22
MOLYBDENUM	0.17
SILVER	ND
CADMIUM	<u>ND</u>
TIN	ND
ANTIMONY	ND
BARIUM	0.17
CERIUM	ND
TANTALUM	ND
TUNGSTEN	0.38
THALLIUM	ND
LEAD	<u>ND</u>
SILICON	0.94
SULFUR	5.0
POTASSIUM	7.8
CALCIUM	1.3
BISMUTH	ND

Notes and Definitions for this Report:

ANALYST	AJK		
UNITS _	mg/L		

70 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

1. 1. **1**. 1.

· "我们的你,我们就能知道你就能够。"他就是她说道:"你们就

 Order # 93-11-001
 REECO ASD/ACS
 Page 3

 11/18/93 15:18
 TEST RESULTS BY SAMPLE
 Page 3

Sample Description: 93-11-001-QC2 INFO_I Lab No: 03A Test Description: INFORMATION FOR INORGANIC Category: ICPSCN_QC Test Code: INFO_I

PARAMETER	PREP_DATE	RUN_DATE	ANALYSTS
ICP		11/04/93	<u>AJK</u>
GFAA			
HG (CV)			

> . .

> > ,

!

•

ζ

t

Sample Description: 93-11-001-QC3 DETEC. LIMIT Lab No: 04A Test Description: ICP SCAN Category: ICPSCN_QC Test Code: ICPSCN

Page 4

PARAMETER	RESULT		
LITHIUM	0.0033		
BERYLLIUM	0.0018		
BORON	0.0033		
SODIUM	0.087		
MAGNESIUM	0.048		
ALUMINUM	0.028		
PHOSPHORUS	0.066		
TITANIUM	0.0030		
VANADIUM	0.0078		
CHROMIUM	0.0048		
MANGANESE	0.0012		
IRON	0.0027		
COBALT	0.012		
NICKEL	0.032		
COPPER	0.0027		
ZINC	0.0015		
ARSENIC	0.042		
SELENIUM	0.048		
STRONTIUM	0.0018		
MOLYBDENUM	0.0027		
SILVER	0.020		
CADMIUM	0.0042		
TIN	0.021		
ANTIMONY	0.015		
BARIUM	0.0018		
CERIUM	0.095		
TANTALUM	0.039		
TUNGSTEN	0.042		
THALLIUM	0.016		
LEAD	0.035		
SILICON	0.041		
SULFUR	0.051		
POTASSIUM	0.438		
CALCIUM	0.010		
BISMUTH	0.21		

Notes and Definitions for this Report:

ANALYST	AJK
UNITS	mg/L

72 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

Order # 93-11-001 11/18/93 15:18 Page 5

 Sample Description: 93-11-001-CV
 INST CHK SPK
 Lab No: 05A

 Test Description: ICP SCAN
 Category: ICPSCN_QC
 Test Code: ICPSCN

PARAMETER	RESULT
LITHIUM	98
BERYLLIUM	<u>96</u>
BORON	100
SODIUM	100
MAGNESIUM	97
ALUMINUM	<u> </u>
PHOSPHORUS	105
TITANIUM	99
VANADIUM	98
CHROMIUM	102
MANGANESE	103
IRON	100
COBALT	<u>N/A</u>
NICKEL	<u>N/A</u>
COPPER	99
ZINC	102
ARSENIC	<u> </u>
SELENIUM	<u> </u>
STRONTIUM	99
MOLYBDENUM	100
SILVER	<u> </u>
CADMIUM	<u> </u>
TIN	<u> </u>
ANTIMONY	<u>. N/A</u>
BARIUM	100
CERIUM	<u>N/A</u>
TANTALUM	<u> </u>
TUNGSTEN	96
THALLIUM	<u>N/A</u>
LEAD	<u> </u>
SILICON	140
SULFUR	100
POTASSIUM	96
CALCIUM	100
BISMUTH	<u>N/A</u>

Notes and Definitions for this Report:

ANALYST		AJK	
UNITS	%	RECOVERY	

.....

,

· -

Ç ī, ÷ . . ÷ 1 . ٠, . ÷

1

Order # 93-11-001 11/18/93 15:18	REECO ASD/ACS REGULAR TEST RESULTS	Page 6
BNA ORGANICS (EPA 8270) Method: SW846 8270	Mīnīmum:	Maxîmum:
<u>Samp Sample Description</u> 01A C5682-3 02A 93-11-001-QC1 METHOD BLA		Units Limit Prepared Analyzed By PACKAGE PACKAGE

74 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

z

Order # 93-11-001 11/18/93 15:18

INORGANIC ANALYST'S NOTES:

- / •

Sample number C5682-3 was diluted by the organic branch in order to get enough sample to extract. This diluted sample was given to the inorganic branch to run an ICP metals scan. The sample was diluted by a factor of 2.3, 430 ml of sample diluted to a final volume of 1000 ml. During the preparation of the sample for metals analysis, 100 ml of sample was digested and concentrated down to a final volume of 50 ml, or a concentration factor of 2.0. This was done in order to get the sample as close to the original sample concentration as possible.

12 - A.S.

÷

\$10

Page 7

•

į٠

·'.

•

Ż

* * -

ANALYST NOTES: BNAS

Date:

November 15,1993

Lab Work Order No.: 93-11-001

Client Sample ID.: SBLK1101W (Extraction Blank) C5682-3

Analyst: Phil Briggs

The samples were analyzed on a Hewlett Packard 5890 GC/5970 MSD. Data were collected on an HP 1000/RTE-A data system. Instrumental parameters used are those specified in SW-846 3rd edition, September, 1986, METHOD 8270 (for capillary column GC).

The target analytes are listed with their CAS numbers, and the amount of the target compound found in ug/L or ug/kg, depending on the matrix (water or soil, respectively). If the analyte was not found in the sample, the quantitation limit is reported preceded by an n.d. qualifier in the "result" column. The qualifiers used in this reporting format are:

n.d.- Indicates compound was analyzed for but not detected.

- J- Indicates an estimated value. Indicates the presence of a compound that meets the identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- B- This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination.
- E- This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- D- This flag identifies all compounds identified in an analysis at a secondary dilution factor.

Case Narrative:

Only 430 mls water were available for extraction instead of the prerequisite liter. The phthalate detected in the sample should probably be considered contamination of it during handling.

76 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

Name Field: C5682-3Blank:>SD164:PASS QaQc File: QSEMWMMisc Field: 93-11-001-02A 430 ML/TO 1 LITER//EXTR. (DF=2.33)Instrument: BNA1Datafile: >SD153Idfile: ID_B1XQuantfile: ^SD153

Injection time: 16:00 on 11-04-93 Continuing calibration time: 08:59 on 11-04-93 User dilfac:2.33 Quant dilfac: 1. Multi-calibration: 09:25 on 10-13-93

Compound Name	CAS Number	Result	Units	Detection Limit
Phenol	108-95-2	n.d.	uG/L	23.
bis(2-Chloroethyl)ether	111-44-4	n.d.	uG/L	23.
2-Chlorophenol	95-57-8	n.d.	uG/L	23.
1,3-Dichlorobenzene	541-73-1	n.d.	uG/L	23.
1,4-Dichlorobenzene	106-46-7	n.d.	uG/L	23.
Benzyl alcohol	100-51-6	n.d.	uG/L	23.
1,2-Dichlorobenzene	95-50-1	n.d.	uG/L	23.
2-Methylphenol	95-48-7	n.d.	uG/L	23.
2,2'-oxybis(1-Chloropropane)	108-60-1	n.d.	uG/L	23.
bis(2-Chloroisopropyl)ether	39638-32-9	n.d.	uG/L	23.
4-Methylphenol	106-44-5	n.d.	uG/L	23.
N-Nitroso-di-n-propylamine	621-64-7	n.d.	uG/L	23.
Hexachloroethane	67-72-1	n.d.	uG/L	23.
Nitrobenzene	98-95-3	n.d.	uG/L	23.
Isophorone	78-59-1	n.d.	uG/L	23.
2-Nitrophenol	88-75-5	n.d.	uG/L	23.
2,4-Dimethylphenol	105-67-9	n.d.	uG/L	23.
Benzoic acid	65-85-0	n.d.	uG/L	120.
bis(2-Chloroethoxy)methane	111-91-1	n.d.	uG/L	23.
2,4-Dichlorophenol	120-83-2	n.d.	uG/L	23.
1,2,4-Trichlorobenzene	120-82-1	n.d.	uG/L	23.
Naphthalene	91-20-3	n.d.	uG/L	23.
4-Chloroaniline	106-47-8	n.d.	uG/L	23.
Hexachlorobutadiene	87-68-3	n.d.	uG/L	23.
4-Chloro-3-methylphenol	59-50-7	n.d.	uG/L	23.
2-Methylnaphthalene	91-57-6	n.d.	uG/L	23.
Hexachlorocyclopentadiene	77-47-4	n.d.	uG/L	23.
2,4,6-Trichlorophenol	88-06-2	n.d.	uG/L	23.
2,4,5-Trichlorophenol	95-95-4	n.d.	uG/L	120.
2-Chloronaphthalene	91-58-7	n.d.	uG/L	23.
2-Nitroaniline	88-74-4	n.d.	uG/L	120.
Dimethylphthalate	131-11-3	n.d.	uG/L	23.
Acenaphthylene	208-96-8	n.d.	uG/L	23.
2,6-Dinitrotoluene	606-20-2	n.d.	uG/L	23.
3-Nitroaniline	99-09-2	n.d.	uG/L	120.
Acenaphthene	83-32-9	n.d.	uG/L	23.
2,4-Dinitrophenol	51-28-5	n.d.	uG/L	120.
4-Nitrophenol	100-02-7	n.d.	uG/L	120.
Dibenzofuran	132-64-9	n.d.	uG/L	23.
2,4-Dinitrotoluene	121-14-2	n.d.	uG/L	23.
Diethylphthalate	84-66-2	n.d.	uG/L	23.
4-Chlorophenyl-phenylether	7005-72-3	n.d.	uG/L	23.
Fluorene	86-73-7	n.d.	uG/L	23.
4-Nitroaniline	100-01-6	n.d.	uG/L	120.
***************************************	*=================		× == = = = = = = = = = = = = = = = = =	

ŧ

. . .

1.

APPENDIX F 77

....

. . . ,

÷

·-

•

;

Name Field: C5682-3Blank:>SD164:PASS QaQc File: QSEMWMMisc Field: 93-11-001-02A 430 ML/TO 1 LITER//EXTR.(DF=2.33)Instrument: BNA1Datafile: >SD153Idfile: ID_B1XQuantfile: ^SD153

Compound Name	CAS Number	Result	Units	Detection Limit
4,6-Dinitro-2-methylphenol	534-52-1	n.d.	uG/L	120.
N-Nitrosodiphenylamine	86-30-6	n.d.	uG/L	23.
4-Bromophenyl-phenylether	101-55-3	n.d.	uG/L	23.
Hexachlorobenzene	118-74-1	n.d.	uG/L	23.
Pentachlorophenol	87-86-5	n.d.	uG/L	120.
Phenanthrene	85-01-8	n.d.	uG/L	23.
Anthracene	120-12-7	n.d.	uG/L	23.
Carbazole	86-74-8	n.d.	uG/L	23.
Di-n-butylphthalate	84-74-2	n.d.	uG/L	23.
Fluoranthene	206-44-0	n.d.	uG/L	23.
Pyrene	129-00-0	n.d.	uG/L	23.
Butylbenzylphthalate	85-68-7	n.d.	uG/L	23.
3,3'-Dichlorobenzidine	91-94-1	n.d.	uG/L	47.
Benzo(a)anthracene	56-55-3	n.d.	uG/L	23.
Chrysene	218-01-9	n.d.	uG/L	23.
bis(2-Ethylhexyl)phthalate	117-81-7	54.	uG/L	23.
Di-n-octylphthalate	117-84-0	n.d.	uG/L	23.
Benzo(b)fluoranthene	205-99-2	n.d.	uG/L	23.
Benzo(k)fluoranthene	207-08-9	n.d.	uG/L	23.
Benzo(a)pyrene	50-32-8	n.d.	uG/L	23.
Indeno(1,2,3-cd)pyrene	193-39-5	n.d.	uG/L	23.
Dibenzo(a,h)anthracene	53-70-3	n.d.	uG/L	23.
Benzo(g,h,i)perylene	191-24-2	n.d.	uG/L	23.

n.d. - not detected

Approved by:

78 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

, ha bhailtean 1977 ann an Air an Stade Chailtean

Name Field: SBLK1101W Misc Field: 93-11-001-02A Datafile: >SD164 Idfile: ID B1X Instrument: BNA1

QaQc File: QSEMWM

Quantfile: ^SD164

Detection

: `

.

.

.

.

.

. . ÷

. 4.

5

Ľ

, .

Injection time: 18:29 on 11-10-93 Quant Time: 19:12 on 11-10-93 Continuing calibration time : 13:08 on 11-10-93 using the file: ^SC158::D3 User dilfac:1.00 Quant dilfac: 1. Multi-calibration: 11:06 on 11-10-93

Compound Name	CAS Number	Result	Units	Limit
Phenol	108-95-2	n.d.	uG/L	10.
bis(2-Chloroethyl)ether	111-44-4	n.d.	uG/L	10.
2-Chlorophenol	95-57-8	n.d.	uG/L	10.
1,3-Dichlorobenzene	541-73-1	n.d.	uG/L	10.
1,4-Dichlorobenzene	106-46-7	n.d.	uG/L	10.
Benzyl alcohol	100-51-6	n.d.	uG/L	10.
1,2-Dichlorobenzene	95-50-1	n.d.	uG/L	10.
2-Methylphenol	95-48-7	n.d.	uG/L	10.
2,2'-oxybis(1-Chloropropane)	108-60-1	n.d.	uG/L	10.
bis(2-Chloroisopropyl)ether	39638-32-9	n.d.	uG/L	10.
4-Methylphenol	106-44-5	n.d.	uG/L	10.
	621-64-7	n.d.	uG/L	10.
N-Nitroso-di-n-propylamine Hexachloroethane	67-72-1	n.d.	uG/L	10.
Nitrobenzene	98-95-3	n.d.	uG/L	10.
Isophorone	78-59-1	n.d.	uG/L	10.
2-Nitrophenol	.88-75-5	n.d.	uG/L	10.
2,4-Dimethylphenol	105-67-9	n.d.	uG/L	10.
Benzoic acid	65-85-0	n.d.	uG/L	50.
bis(2-Chloroethoxy)methane	111-91-1	n.d.	uG/L	10.
2,4-Dichlorophenol	120-83-2	n.d.	uG/L	10.
1,2,4-Trichlorobenzene	120-82-1	n.d.	uG/L	10.
Naphthalene	91-20-3	n.d.	uG/L	10.
4-Chloroaniline	106-47-8	n.d.	uG/L	10.
Hexachlorobutadiene	87-68-3	n.d.	uG/L	10.
4-Chloro-3-methylphenol	59-50-7	n.d.	uG/L	10.
2-Methylnaphthalene	91-57-6	n.d.	uG/L	10.
Hexachlorocyclopentadiene	77-47-4	n.d.	uG/L	10.
2,4,6-Trichlorophenol	88-06-2	n.d.	uG/L	10.
	95-95-4	n.d.	uG/L	50.
2,4,5-Trichlorophenol	91-58-7	n.d.	uG/L	10.
2-Chloronaphthalene 2-Nitroaniline	88-74-4	n.d.	uG/L	50.
Dimethylphthalate	131-11-3	n.d.	uG/L	10.
Acenaphthylene	208-96-8	n.d.	uG/L	10.
2,6-Dinitrotoluene	606-20-2	n.d.	uG/L	10.
3-Nitroaniline	99-09-2	n.d.	uG/L	50.
Acenaphthene	83-32-9	n.d.	uG/L	10.
2,4-Dinitrophenol	51-28-5	n.d.	uG/L	50.
4-Nitrophenol	100-02-7	n.d.	uG/L	50.
Dibenzofuran	132-64-9	n.d.	uG/L	10.
2,4-Dinitrotoluene	121-14-2	n.d.	uG/L	10.
	84-66-2	n.d.	uG/L	10.
Diethylphthalate 4-Chlorophenyl-phenylether	7005-72-3	n.d.	uG/L	10.
Fluorene	86-73-7	n.d.	uG/L	10.
4-Nitroaniline	100-01-6	n.d.	uG/L	50.
			===========	

Name Field: SBLK1101W Misc Field: 93-11-001-02A Instrument: BNA1 Datafile: >SD164 Idfile: ID_B1X Quantfile: ^SD164

QaQc File: QSEMWM

Compound Name	CAS Number	Result	Units	Detection Limit
4,6-Dinitro-2-methylphenol	534-52-1	n.d.		50.
N-Nitrosodiphenylamine	86-30-6	n.d.	uG/L	10.
4-Bromophenyl-phenylether	101-55-3	n.d.	uG/L	10.
Hexachlorobenzene	118-74-1	n.d.	uG/L	10.
Pentachlorophenol	87-86-5	n.d.	uG/L	50.
Phenanthrene	85-01-8	n.d.	uG/L	10.
Anthracene	120-12-7	n.d.	uG/L	10.
Carbazole	86-74-8	n.d.	uG/L	10.
Di-n-butylphthalate	84-74-2	n.d.	uG/L	10.
Fluoranthene	206-44-0	n.d.	uG/L	10.
Pyrene	129-00-0	n.d.	uG/L	10.
Butylbenzylphthalate	85-68-7	n.d.	uG/L	10.
3,3'-Dichlorobenzidine	91-94-1	n.d.	uG/L	20.
Benzo(a)anthracene	56-55-3	n.d.	uG/L	10.
Chrysene	218-01-9	n.d.	uG/L	10.
bis(2-Ethylhexyl)phthalate	117-81-7	n.d.	uG/L	10.
Di-n-octylphthalate	117-84-0	n.d.	uG/L	10.
Benzo(b)fluoranthene	205-99-2	n.d.	uG/L	10.
Benzo(k)fluoranthene	207-08-9	n.d.	uG/L	10.
Benzo(a)pyrene	50-32-8	n.d.	uG/L	10.
Indeno(1,2,3-cd)pyrene	193-39-5	n.d.	uG/L	10.
Dibenzo(a,h)anthracene	53-70-3	n.d.	uG/L	10.
Benzo(g,h,i)perylene	191-24-2	n.d.	uG/L	10.

n.d. - not detected

Approved by:

80 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

the second and

DATA PACKAGE REVIEW

	i
ACS PACKET NUMBER: <u>93-11-001</u>	CLIENT: FRED FERATE
LABORATORY: <u>REECO-ASD</u> DATE REVIEWED: <u>11-18-93</u>	REVIEWED BY: Jemply Augus
BNA:	
MATRIX: WATER	ARE BNA DATA ACCEPTABLE: YES 🥹
1. TUNE DFTPP DFTPP	DATE/TIME CRITERIA ACCEPTABLE 10-27-93/0735 YES 11-4-93/0821 YES
2. CALIBRATION INITIAL SSTD050	<u>11-10-93/0924</u> <u>10-27-93</u> <u>YES</u> <u>11-4-93/0859</u> <u>YES</u>
3. METHOD BLANK <u>SBLK1101W</u> 4. SAMPLES <u>C5682-3</u>	11-10-93/1308 YES 11-10-93/1829 YES 11-4-93/1600 YES
5. SURROGATE RECOVERY ACCEPTABLE: 6. MS/MSD RECOVERY ACCEPTABLE: 7. METHOD BLANK ACCEPTABLE: 8. HOLDING TIMES ACCEPTABLE:	YES N/A YES YES #DAYS ACCEPTABLE
a. Date Sampled: <u>9-27-93</u> b. Date ACS Received: <u>10-28-93</u> c. Date Contract Lab	<u>0</u> 31 YES
Received: N/A d. Date Extracted: 11-1-93 e. Date Analyzed: 11-10-93 9. Correct conc units used: YE 10. CALCULATIONS ACCEPTABLE: YE 11. IS AREAS ACCEPTABLE: YE	<u>s</u>
12. RRT IS ACCEPTABLE: YE 13. FORMS ACCEPTABLE: YE 14. Chain-of-Custody agrees: YE COMMENTS: HOLD TIME TO EXTRACTION WAS THE SAMPLE. YE	<u>S</u>

EFRE-2260 (03/93)

•

• •

.

,

•

2

.

ζ.

ł

APPENDIX F 81

DATA PACKAGE REVIEW

ACS PAG	KET NUMBER:	93-11-001		CLIENT:	FRED FERATE	
LABORAT	ORY:	REECO-ASD			Λ	Л
DATE RE	EVIEWED:	11-8-93		REVIEWED	BY: Any f	Augu
Total P	IETALS					0
MATRIX:	WATERO	ARE	METALS	DATA ACCEP	PTABLE:	YES
1. 2. 3. 4.	Are Method Bl Are Matrix Sp Are QC Sample Are Holding T	anks Acceptab ikes Acceptab s Acceptable: imes Acceptab	le: le: le:	YES YES YES YES		
					<u># DAYS</u>	<u>ACCEPTABLE</u>
	 a. Sample Dat b. Date ACS R c. Date Contr Recei d. Date Hg Ex e. Date Hg An f. Date Other 	act Lab ved: tracted: alyzed: s Extracted:	9-27- 10-28 N/A N/A N/A	<u>3-93</u>	0 N/A N/A N/A N/A	0 YES N/A N/A N/A N/A
6.	g. Date Other Are Forms cor Are correct conc. units u Are analyses Chain-of-Cust	sed:	YES	<u>.</u>	<u>38</u>	
COMMENT	S:			···	····	
	·····					
		······			······································	

EFRE-2262 (03/93)

82 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada

•

SAMPLE CHAIN-OF-CUSTODY RECORD										
LOCATION OF SAMPLING: AREA ZO, WELL PH-Z. WORK ORDER NO .: 1/25-022 PACKET NO .: 93-10-001										
ITEM No.	DATE/TIME SAMPLED	FIELD SAMPLE I.).	LABOR/ SAMPL		ANALY			COMMENTS	
1	9/27/93	C5682-	-3	- (DIA	BNA		See Spe	cial Inst	tructions
2 -	<u></u>	ast In	tem							······
3		$ \frown $	<u>\</u>							
4						ļ				
5						ļ	<u> </u>	<u></u>		
6			/			ļ				
7		/				ļ				
8		/				ļ			,	
9						 		Rad S	uney.	
10		$ \downarrow \downarrow \downarrow$	·			<u> </u>	<u></u>	ver #	Hached.	
SAI								NA		
	_	SIGNATURE						PRI	NT NAME	
OR	GANIZATION (PRINT):	<u>KE</u>	ECa	>						
	RELINQUISHED (SIGNATURE			e/TIME QUISHED		E/TIME EIVED		F (SIGN, PRINT N	RECEIVED BY:	
		2		28193			(A	Thering	7 7	standa
$ \geq$	Ived Feral	25		510	1	1610 (a		Herine		staneda AC
				B	bara	A. 1	mil			
[[-¢	florene f. (l	Aturdo		00		00	Ba	rbarg A.	Homme	I ASD
	thories) (i	1-1/2		02193	11 10	12193	10	et an	۵	•
A	avaian	· peoneg	0	930	09	330	A	KARI	uS	ACS
			/		1	1		•••••	•	
		<u> </u>								
			/	1	/	1			•	
					 					
				1	//	1	ļ		••••••	
					ļ	<u>. </u>	 			
				1	//		ļ	•••••	•••••••	•••••••••••••••••••••••••••••••••••••••
									<u> </u>	
			/.	1	· · · · · ·		 	•••••		
			L		I		L			
YN		B USE ONLY			DISPOS	TION:				
MA	PACKAGES REC'D W	·			TURE:				DATE:	1 1
Ϋ́	X SAMPLE LABELS AND C-O-C AGREE?									

.

19. J. E.

••

· · · ·

DISTRIBUTION: White (Original) - retained by laboratory performing final analysis

. .

APPENDIX F 83

·. · · ·

.....

* .**.**

۶ •

<u>.</u>

..

٤.,

REYN DS ELECTRICAL & ENGINEERIN CO., INC. SAMELING AND ANALYSIS INFORMATION FORM										
PROJECT DESCRIPTION										
WORK ORDER NO: 125-022 PROJECT MANAGER: FRED FERATE PROJECT I.D.: WELL PM-2										
DATE SAMPLING NEED	DATE SAMPLING NEEDED: TELEPHONE: 5-7102 DEPARTMENT: ASD M/S: 776									
SAMPLING LOCATION:	SAMPLING LOCATION: WELL PM-2, AREAZO ON-SITE CONTACT: FRED FERATE									
OFFICE LOCATION:	MERCUR	1, BLDG6	50, RM. 142	CONTACT TELEPH	ONE: 295-7102					
DETAILED SITE DESCR	DETAILED SITE DESCRIPTION: WELL PM-2. ON PAHUTE MESA, 270 M. FROM									
SCHOONER	CRATER.	SAMPLE	TAKEN ,	AT DEPTH	OF 2,000 FT.					
BELOW TO	P OF CASI	VG, ON 91	127/93,							
	SITE S	SAFETY, HEALT	H, AND RADIO	LOGICAL EVALUA	TION					
RADIOLOGICAL HAZAF SAFETY HAZARDS I. H. HAZARDS		AZARD HAZA X -	(SEE REVERSE		ON 748 P July PROPRIATE ACTION IF POTENTIAL					
		ANA	LYSIS DESCRIP	TION						
special instructions (number of samples, specific locations, compositing requirements, etc): <u>One Sample</u> , <u>Perform CLP-type BNA analysis to determine composition of dark matter</u> . (if petroleum, whether crude or refined). If liquid not clear after extraction, simultan eously initiate ICP metals scan. Try to have results to me by Thurs. Nov. 4, 1993.										
		BED		IENTS						
REPORT REQUIREMENTS DATE FINAL REPORT REQUIRED: 11 / 4/ 9.3 PRELIMINARY REPORT REQUIRED? Y / N REPORT TYPE: 1. TARGET COMPOUND (TC) RESULTS ONLY 2. TC AND QC RESULTS 4. TCL, TIC AND QC RESULTS 2. TC AND QC RESULTS 5. CLP FORMAT REPORT 3. TC AND TENTATIVELY IDENTIFIED COMPOUND (TIC) RESULTS 5. CLP FORMAT REPORT										
PROJECT MANAGER SIGNATURE:										
LAB ID #										
	Ref. Packet 1.	tem C5682/3	Unknown substance in Wa	ter ~450mL	BNA, possibly ICP elsu					
		/			//					

84 Summary of Data Concerning Radiological Contamination at Well PM-2, Nevada Test Site, Nye County, Nevada