2,213 research outputs found

    An order parameter equation for the dynamic yield stress in dense colloidal suspensions

    Full text link
    We study the dynamic yield stress in dense colloidal suspensions by analyzing the time evolution of the pair distribution function for colloidal particles interacting through a Lennard-Jones potential. We find that the equilibrium pair distribution function is unstable with respect to a certain anisotropic perturbation in the regime of low temperature and high density. By applying a bifurcation analysis to a system near the critical state at which the stability changes, we derive an amplitude equation for the critical mode. This equation is analogous to order parameter equations used to describe phase transitions. It is found that this amplitude equation describes the appearance of the dynamic yield stress, and it gives a value of 2/3 for the shear thinning exponent. This value is related to the mean field value of the critical exponent δ\delta in the Ising model.Comment: 8 pages, 2 figure

    Surface-mediated attraction between colloids

    Full text link
    We investigate the equilibrium properties of a colloidal solution in contact with a soft interface. As a result of symmetry breaking, surface effects are generally prevailing in confined colloidal systems. In this Letter, particular emphasis is given to surface fluctuations and their consequences on the local (re)organization of the suspension. It is shown that particles experience a significant effective interaction in the vicinity of the interface. This potential of mean force is always attractive, with range controlled by the surface correlation length. We suggest that, under some circumstances, surface-induced attraction may have a strong influence on the local particle distribution

    Electrophoresis of a polyelectrolyte through a nanopore

    Get PDF
    A hydrodynamic model for determining the electrophoretic speed of a polyelectrolyte through a nanopore is presented. It is assumed that the speed is determined by a balance of electrical and viscous forces arising from within the pore and that classical continuum electrostatics and hydrodynamics may be considered applicable. An explicit formula for the translocation speed as a function of the pore geometry and other physical parameters is obtained and is shown to be consistent with experimental measurements on DNA translocation through nanopores in silicon membranes. Experiments also show a weak dependence of the translocation speed on polymer length that is not accounted for by the present model. It is hypothesized that this is due to secondary effects that are neglected here.Comment: 5 pages, 2 column, 2 figure

    Dynamic regimes of hydrodynamically coupled self-propelling particles

    Full text link
    We analyze the collective dynamics of self-propelling particles (spps) which move at small Reynolds numbers including the hydrodynamic coupling to the suspending solvent through numerical simulations. The velocity distribution functions show marked deviations from Gaussian behavior at short times, and the mean-square displacement at long times shows a transition from diffusive to ballistic motion for appropriate driving mechanism at low concentrations. We discuss the structures the spps form at long times and how they correlate to their dynamic behavior.Comment: 7 pages, 4 figure

    Viscoelasticity of two-layer-vesicles in solution

    Full text link
    The dynamic shape relaxation of the two-layer-vesicle is calculated. In additional to the undulation relaxation where the two bilayers move in the same direction, the squeezing mode appears when the gap between the two bilayers is small. At large gap, the inner vesicle relaxes much faster, whereas the slow mode is mainly due to the outer layer relaxation. We have calculated the viscoelasticity of the dilute two-layer-vesicle suspension. It is found that for small gap, the applied shear drives the undulation mode strongly while the slow squeezing mode is not much excited. In this limit the complex viscosity is dominated by the fast mode contribution. On the other hand, the slow mode is strongly driven by shear for larger gap. We have determined the crossover gap which depends on the interaction between the two bilayers. For a series of samples where the gap is changed systematically, it is possible to observe the two amplitude switchings

    Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions

    Full text link
    Charge-stabilized colloidal suspensions can be conveniently described by formally reducing the macroion-microion mixture to an equivalent one-component system of pseudo-particles. Within this scheme, the utility of a linear response approximation for deriving effective interparticle interactions has been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)]. Here the response approach is extended to suspensions of finite-sized macroions and used to derive explicit expressions for (1) an effective electrostatic pair interaction between pseudo-macroions and (2) an associated volume energy that contributes to the total free energy. The derivation recovers precisely the form of the DLVO screened-Coulomb effective pair interaction for spherical macroions and makes manifest the important influence of the volume energy on thermodynamic properties of deionized suspensions. Excluded volume corrections are implicitly incorporated through a natural modification of the inverse screening length. By including nonlinear response of counterions to macroions, the theory may be generalized to systematically investigate effective many-body interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press

    Influence of polydispersity on the critical parameters of an effective potential model for asymmetric hard sphere mixtures

    Full text link
    We report a Monte Carlo simulation study of the properties of highly asymmetric binary hard sphere mixtures. This system is treated within an effective fluid approximation in which the large particles interact through a depletion potential (R. Roth {\em et al}, Phys. Rev. E{\bf 62} 5360 (2000)) designed to capture the effects of a virtual sea of small particles. We generalize this depletion potential to include the effects of explicit size dispersity in the large particles and consider the case in which the particle diameters are distributed according to a Schulz form having degree of polydispersity 14%. The resulting alteration (with respect to the monodisperse limit) of the metastable fluid-fluid critical point parameters is determined for two values of the ratio of the diameters of the small and large particles: qσs/σˉb=0.1q\equiv\sigma_s/\bar\sigma_b=0.1 and q=0.05q=0.05. We find that inclusion of polydispersity moves the critical point to lower reservoir volume fractions of the small particles and high volume fractions of the large ones. The estimated critical point parameters are found to be in good agreement with those predicted by a generalized corresponding states argument which provides a link to the known critical adhesion parameter of the adhesive hard sphere model. Finite-size scaling estimates of the cluster percolation line in the one phase fluid region indicate that inclusion of polydispersity moves the critical point deeper into the percolating regime. This suggests that phase separation is more likely to be preempted by dynamical arrest in polydisperse systems.Comment: 11 pages, 10 figure

    Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic Arrays

    Full text link
    A new approach to separation of a variety of microscopic and mesoscopic objects in dilute solution is presented. The approach takes advantage of unique properties of a specially designed separation device (sieve), which can be readily built using already developed microlithographic techniques. Due to the broken reflection symmetry in its design, the direction of motion of an object in the sieve varies as a function of its self-diffusion constant, causing separation transverse to its direction of motion. This gives the device some significant and unique advantages over existing fractionation methods based on centrifugation and electrophoresis.Comment: 4 pages with 3 eps figures, needs RevTeX 3.0 and epsf, also available in postscript form http://cmtw.harvard.edu/~deniz

    Self diffusion in a system of interacting Langevin particles

    Full text link
    The behavior of the self diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β\beta and the particle density ρ\rho. The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β\beta and ρβ\rho\beta constant. The one-loop result can also be re-summed using a semi-phenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signalled by the vanishing of the diffusion constant -- possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two-dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.Comment: 12 pages, 8 figures .ep

    Dynamics of hard sphere colloidal dispersions

    Get PDF
    Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement
    corecore