936 research outputs found
Design of thin-film photonic metamaterial L\"uneburg lens using analytical approach
We design an all-dielectric L\"uneburg lens as an adiabatic space-variant
lattice explicitly accounting for finite film thickness. We describe an
all-analytical approach to compensate for the finite height of subwavelength
dielectric structures in the pass-band regime. This method calculates the
effective refractive index of the infinite-height lattice from effective medium
theory, then embeds a medium of the same effective index into a slab waveguide
of finite height and uses the waveguide dispersion diagram to calculate a new
effective index. The results are compared with the conventional numerical
treatment - a direct band diagram calculation, using a modified
three-dimensional lattice with the superstrate and substrate included in the
cell geometry. We show that the analytical results are in good agreement with
the numerical ones, and the performance of the thin-film L\"uneburg lens is
quite different than the estimates obtained assuming infinite height.Comment: 11 pages, 8 figures, uses opex3.st
Density functional theory of phase coexistence in weakly polydisperse fluids
The recently proposed universal relations between the moments of the
polydispersity distributions of a phase-separated weakly polydisperse system
are analyzed in detail using the numerical results obtained by solving a simple
density functional theory of a polydisperse fluid. It is shown that universal
properties are the exception rather than the rule.Comment: 10 pages, 2 figures, to appear in PR
Precision near-infrared radial velocity instrumentation II: Non-Circular Core Fiber Scrambler
We have built and commissioned a prototype agitated non-circular core fiber
scrambler for precision spectroscopic radial velocity measurements in the
near-infrared H band. We have collected the first on-sky performance and modal
noise tests of these novel fibers in the near-infrared at H and K bands using
the CSHELL spectrograph at the NASA InfraRed Telescope Facility (IRTF). We
discuss the design behind our novel reverse injection of a red laser for
co-alignment of star-light with the fiber tip via a corner cube and visible
camera. We summarize the practical details involved in the construction of the
fiber scrambler, and the mechanical agitation of the fiber at the telescope. We
present radial velocity measurements of a bright standard star taken with and
without the fiber scrambler to quantify the relative improvement in the
obtainable blaze function stability, the line spread function stability, and
the resulting radial velocity precision. We assess the feasibility of applying
this illumination stabilization technique to the next generation of
near-infrared spectrographs such as iSHELL on IRTF and an upgraded NIRSPEC at
Keck. Our results may also be applied in the visible for smaller core diameter
fibers where fiber modal noise is a significant factor, such as behind an
adaptive optics system or on a small < 1 meter class telescope such as is being
pursued by the MINERVA and LCOGT collaborations.Comment: Proceedings of the SPIE Optics and Photonics Conference "Techniques
and Instrumentation for Detection of Exoplanets VI" held in San Diego, CA,
August 25-29, 201
Retrieval of Precise Radial Velocities from Near-Infrared High Resolution Spectra of Low Mass Stars
Given that low-mass stars have intrinsically low luminosities at optical
wavelengths and a propensity for stellar activity, it is advantageous for
radial velocity (RV) surveys of these objects to use near-infrared (NIR)
wavelengths. In this work we describe and test a novel RV extraction pipeline
dedicated to retrieving RVs from low mass stars using NIR spectra taken by the
CSHELL spectrograph at the NASA Infrared Telescope Facility, where a methane
isotopologue gas cell is used for wavelength calibration. The pipeline
minimizes the residuals between the observations and a spectral model composed
of templates for the target star, the gas cell, and atmospheric telluric
absorption; models of the line spread function, continuum curvature, and
sinusoidal fringing; and a parameterization of the wavelength solution. The
stellar template is derived iteratively from the science observations
themselves without a need for separate observations dedicated to retrieving it.
Despite limitations from CSHELL's narrow wavelength range and instrumental
systematics, we are able to (1) obtain an RV precision of 35 m/s for the RV
standard star GJ 15 A over a time baseline of 817 days, reaching the photon
noise limit for our attained SNR, (2) achieve ~3 m/s RV precision for the M
giant SV Peg over a baseline of several days and confirm its long-term RV trend
due to stellar pulsations, as well as obtain nightly noise floors of ~2 - 6
m/s, and (3) show that our data are consistent with the known masses, periods,
and orbital eccentricities of the two most massive planets orbiting GJ 876.
Future applications of our pipeline to RV surveys using the next generation of
NIR spectrographs, such as iSHELL, will enable the potential detection of
Super-Earths and Mini-Neptunes in the habitable zones of M dwarfs.Comment: 64 pages, 28 figures, 5 tables. Accepted for publication in PAS
Physiologically-based pharmacokinetic models for children: Starting to reach maturation?
Developmental changes in children can affect the disposition and clinical effects of a drug, indicating that scaling
an adult dose simply down per linear weight can potentially lead to overdosing, especially in very young children.
Physiologically-based pharmacokinetic (PBPK) models are compartmental, mathematical models that can be
used to predict plasma drug concentrations in pediatric populations and acquire insight into the influence of
age-dependent physiological differences on drug disposition. Pediatric PBPK models have generated attention
in the last decade, because physiological parameters for model building are increasingly available and regulatory
guidelines demand pediatric studies during drug development. Due to efforts from academia, PBPK model developers, pharmaceutical companies and regulatory authorities, examp
Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption
The kinetics of irreversible adsorption of spherical particles onto a flat
surface is theoretically studied. Previous models, in which hydrodynamic
interactions were disregarded, predicted a power-law behavior for
the time dependence of the coverage of the surface near saturation.
Experiments, however, are in agreement with a power-law behavior of the form
. We outline that, when hydrodynamic interactions are considered, the
assymptotic behavior is found to be compatible with the experimental results in
a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press
- …