3,427 research outputs found

    Critical behaviors of sheared frictionless granular materials near jamming transition

    Full text link
    Critical behaviors of sheared dense and frictionless granular materials in the vicinity of the jamming transition are numerically investigated. From the extensive molecular dynamics simulation, we verify the validity of the scaling theory near the jamming transition proposed by Otsuki and Hayakawa (Prog. Theor. Phys., 121, 647 (2009)). We also clarify the critical behaviors of the shear viscosity and the pair correlation function based on both a phenomenology and the simulation.Comment: 13pages, 26 figure

    Complete bandgaps in one-dimensional left-handed periodic structures

    Full text link
    Artificially fabricated structures with periodically modulated parameters such as photonic crystals offer novel ways of controlling the flow of light due to the existence of a range of forbidden frequencies associated with a photonic bandgap. It is believed that modulation of the refractive index in all three spatial dimensions is required to open a complete bandgap and prevent the propagation of electromagnetic waves in all directions. Here we reveal that, in a sharp contrast to what was known before and contrary to the accepted physical intuition, a one-dimensional periodic structure containing the layers of transparent left-handed (or negative-index) metamaterial can trap light in three-dimensional space due to the existence of a complete bandgap.Comment: 4 pages, 5 figure

    Reverse-selective diffusion in nanocomposite membranes

    Full text link
    The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction (Merkel et al., Science, 296, 2002). This intriguing observation contradicts even qualitative expectations based on Maxwell's classical theory of conduction/diffusion in composites with homogeneous phases. This letter presents a simple theoretical interpretation based on classical models of diffusion and polymer physics. An essential feature of the theory is a polymer-segment depletion layer at the inclusion-polymer interface. The accompanying increase in free volume leads to a significant increase in the local penetrant diffusivity, which, in turn, increases the bulk permeability while exhibiting reverse selectivity. This model captures the observed dependence of the bulk permeability on the inclusion size and volume fraction, providing a straightforward connection between membrane microstructure and performance

    Dominance modification

    Get PDF
    Dominance modificatio

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic

    Nonlinear effects in charge stabilized colloidal suspensions

    Full text link
    Molecular Dynamics simulations are used to study the effective interactions in charged stabilized colloidal suspensions. For not too high macroion charges and sufficiently large screening, the concept of the potential of mean force is known to work well. In the present work, we focus on highly charged macroions in the limit of low salt concentrations. Within this regime, nonlinear corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)] have to be considered. For non--bulklike systems, such as isolated pairs or triples of macroions, we show, that nonlinear effects can become relevant, which cannot be described by the charge renormalization concept [S. Alexander et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and the primitive model. However, on a quantitative level, neither Debye-H\"uckel theory nor the charge renormalization concept can be confirmed in detail. This seems mainly to be related to the fact, that for small ion concentrations, microionic layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure

    Instabilities in Zakharov Equations for Laser Propagation in a Plasma

    Full text link
    F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov system arising in the study of Laser-plasma interaction, is locally well posed in the whole space, for fields vanishing at infinity. Here we show that in the periodic case, seen as a model for fields non-vanishing at infinity, the system develops strong instabilities of Hadamard's type, implying that the Cauchy problem is strongly ill-posed

    Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity

    Full text link
    Transitions in structural heterogeneity of colloidal depletion gels formed through short-range attractive interactions are correlated with their dynamical arrest. The system is a density and refractive index matched suspension of 0.20 volume fraction poly(methyl methacyrlate) colloids with the non-adsorbing depletant polystyrene added at a size ratio of depletant to colloid of 0.043. As the strength of the short-range attractive interaction is increased, clusters become increasingly structurally heterogeneous, as characterized by number-density fluctuations, and dynamically immobilized, as characterized by the single-particle mean-squared displacement. The number of free colloids in the suspension also progressively declines. As an immobile cluster to gel transition is traversed, structural heterogeneity abruptly decreases. Simultaneously, the mean single-particle dynamics saturates at a localization length on the order of the short-range attractive potential range. Both immobile cluster and gel regimes show dynamical heterogeneity. Non-Gaussian distributions of single particle displacements reveal enhanced populations of dynamical trajectories localized on two different length scales. Similar dependencies of number density fluctuations, free particle number and dynamical length scales on the order of the range of short-range attraction suggests a collective structural origin of dynamic heterogeneity in colloidal gels.Comment: 14 pages, 10 figure

    Fractionation effects in phase equilibria of polydisperse hard sphere colloids

    Full text link
    The equilibrium phase behaviour of hard spheres with size polydispersity is studied theoretically. We solve numerically the exact phase equilibrium equations that result from accurate free energy expressions for the fluid and solid phases, while accounting fully for size fractionation between coexisting phases. Fluids up to the largest polydispersities that we can study (around 14%) can phase separate by splitting off a solid with a much narrower size distribution. This shows that experimentally observed terminal polydispersities above which phase separation no longer occurs must be due to non-equilibrium effects. We find no evidence of re-entrant melting; instead, sufficiently compressed solids phase separate into two or more solid phases. Under appropriate conditions, coexistence of multiple solids with a fluid phase is also predicted. The solids have smaller polydispersities than the parent phase as expected, while the reverse is true for the fluid phase, which contains predominantly smaller particles but also residual amounts of the larger ones. The properties of the coexisting phases are studied in detail; mean diameter, polydispersity and volume fraction of the phases all reveal marked fractionation. We also propose a method for constructing quantities that optimally distinguish between the coexisting phases, using Principal Component Analysis in the space of density distributions. We conclude by comparing our predictions to perturbative theories for near-monodisperse systems and to Monte Carlo simulations at imposed chemical potential distribution, and find excellent agreement.Comment: 21 pages, 23 figures, 2 table
    • …
    corecore