36 research outputs found

    User considerations in assessing pharmacogenomic tests and their clinical support tools

    Get PDF
    Pharmacogenomic (PGx) testing is gaining recognition from physicians, pharmacists and patients as a tool for evidence-based medication management. However, seemingly similar PGx testing panels (and PGx-based decision support tools) can diverge in their technological specifications, as well as the genetic factors that determine test specificity and sensitivity, and hence offer different values for users. Reluctance to embrace PGx testing is often the result of unfamiliarity with PGx technology, a lack of knowledge about the availability of curated guidelines/evidence for drug dosing recommendations, and an absence of wide-spread institutional implementation efforts and educational support. Demystifying an often confusing and variable PGx marketplace can lead to greater acceptance of PGx as a standard-of-care practice that improves drug outcomes and provides a lifetime value for patients. Here, we highlight the key underlying factors of a PGx test that should be considered, and discuss the current progress of PGx implementation

    A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies

    Get PDF
    Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment

    Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity

    Get PDF
    Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary1. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da2,3. Using genome-wide linkage analyses, we discovered an association between nerve-injury–induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain

    Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis

    Get PDF
    Variants associated with meconium ileus in cystic fibrosis (CF) were identified in 3,763 patients by GWAS. Five SNPs at two loci near SLC6A14 (min P=1.28×10−12 at rs3788766), chr Xq23-24 and SLC26A9 (min P=9.88×10−9 at rs4077468), chr 1q32.1 accounted for ~5% of the phenotypic variability, and were replicated in an independent patient collection (n=2,372; P=0.001 and 0.0001 respectively). By incorporating that disease-causing mutations in CFTR alter electrolyte and fluid flux across epithelia into an hypothesis-driven genome-wide analysis (GWAS-HD), we identified the same SLC6A14 and SLC26A9 associated SNPs, while establishing evidence for the involvement of SNPs in a third solute carrier gene, SLC9A3. In addition, GWAS-HD provided evidence of association between meconium ileus and multiple constituents of the apical plasma membrane where CFTR resides (P=0.0002, testing 155 apical genes jointly and replicated, P=0.022). These findings suggest that modulating activities of apical membrane constituents could complement current therapeutic paradigms for cystic fibrosis

    Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

    Get PDF
    A combined genome-wide association and linkage study was used to identify loci causing variation in CF lung disease severity. A significant association (P=3. 34 × 10-8) near EHF and APIP (chr11p13) was identified in F508del homozygotes (n=1,978). The association replicated in F508del homozygotes (P=0.006) from a separate family-based study (n=557), with P=1.49 × 10-9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family-based study identified a significant QTL on chromosome 20q13.2 (LOD=5.03). Our findings provide insight into the causes of variation in lung disease severity in CF and suggest new therapeutic targets for this life-limiting disorder

    Application of personalized medicine to chronic disease: a feasibility assessment

    No full text
    Abstract Personalized Medicine has the potential to improve health outcomes and reduce the cost of care; however its adoption has been slow in Canada. Bridgepoint Health is a complex continuous care provider striving to reduce the burden of polypharmacy in chronic patients. The main goal of the study was to explore the feasibility of utilizing personalized medicine in the treatment of chronic complex patients as a preliminary institutional health technology assessment. We analyzed stroke treatment optimization as a clinical indication that could serve as a “proof of concept” for the widespread implementation of pharmacogenetics. The objectives of the study were three-fold: 1. Review current practice in medication administration for stroke treatment at Bridgepoint Health 2. Critically analyze evidence that pharmacogenetic testing could (or could not) enhance drug selection and treatment efficacy for stroke patients; 3. Assess the cost-benefit potential of a pharmacogenetic intervention for stroke. Review current practice in medication administration for stroke treatment at Bridgepoint Health Critically analyze evidence that pharmacogenetic testing could (or could not) enhance drug selection and treatment efficacy for stroke patients; Assess the cost-benefit potential of a pharmacogenetic intervention for stroke. We conducted a review of stroke treatment practices at Bridgepoint Health, scanned the literature for drug-gene and drug-outcome interactions, and evaluated the potential consequences of pharmacogenetic testing using the ACCE model. There is a substantial body of evidence suggesting that pharmacogenetic stratification of stroke treatment can improve patient outcomes in the long-term, and provide substantial efficiencies for the healthcare system in the short-term. Specifically, pharmacogenetic stratification of antiplatelet and anticoagulant therapies for stroke patients may have a major impact on the risk of disease recurrence, and thus should be explored further for clinical application. Bridgepoint Health, and other healthcare institutions taking this path, should consider launching pilot projects to assess the practical impact of pharmacogenetics to optimize treatment for chronic continuous care

    Genetic Dissection of Photoreceptor Subtype Specification by the <i>Drosophila melanogaster</i> Zinc Finger Proteins Elbow and No ocelli

    No full text
    <div><p>The <i>elbow/no ocelli</i> (<i>elb</i>/<i>noc</i>) complex of <i>Drosophila melanogaster</i> encodes two paralogs of the evolutionarily conserved NET family of zinc finger proteins. These transcriptional repressors share a conserved domain structure, including a single atypical C2H2 zinc finger. In flies, Elb and Noc are important for the development of legs, eyes and tracheae. Vertebrate NET proteins play an important role in the developing nervous system, and mutations in the homolog ZNF703 human promote luminal breast cancer. However, their interaction with transcriptional regulators is incompletely understood. Here we show that loss of both Elb and Noc causes mis-specification of polarization-sensitive photoreceptors in the ‘dorsal rim area’ (DRA) of the fly retina. This phenotype is identical to the loss of the homeodomain transcription factor Homothorax (Hth)/dMeis. Development of DRA ommatidia and expression of Hth are induced by the Wingless/Wnt pathway. Our data suggest that Elb/Noc genetically interact with Hth, and we identify two conserved domains crucial for this function. Furthermore, we show that Elb/Noc specifically interact with the transcription factor Orthodenticle (Otd)/Otx, a crucial regulator of rhodopsin gene transcription. Interestingly, different Elb/Noc domains are required to antagonize Otd functions in transcriptional activation, versus transcriptional repression. We propose that similar interactions between vertebrate NET proteins and Meis and Otx factors might play a role in development and disease.</p></div

    Mutagenesis of conserved Elb domains interferes with different Otd functions.

    No full text
    <p><b>A.</b> Schematic illustrating the UAS-construct for over-expression of an Elb protein with an altered Groucho-binding motif (FKPY → IEGS, see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004210#s4" target="_blank">Materials and Methods</a>). <b>B.</b> Over-expression of mutated <i>elb</i>[Gro*] in all photoreceptors using LGMR-GAL4 leads to a specific loss of Rh3 (red), while Rh4 expression (cyan) is normal. <b>C.</b> In R8 cells, Rh5 (blue) is specifically lost, while Rh6 expression (green) is normal. <b>D.</b> Table summarizing gain-of-function phenotypes observed using different point-mutated forms of Elb. Every mutant produces a specific phenotype that can be broken down into four aspects: DRA specification, <i>rh3</i> expression, r<i>h5</i> expression, and <i>rh6</i> expression. Abbreviations: DN, dominant-negative; wt  =  expression like wild type; ‘-’  =  loss of expression; ‘+’  =  de-repression of expression into outer photoreceptors R1-6; ‘N/A’  =  DRA specification could not be assessed due to ectopic loss of Rh3 expression.</p
    corecore