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Abstract

Variants associated with meconium ileus in cystic fibrosis (CF) were identified in 3,763 patients 

by GWAS. Five SNPs at two loci near SLC6A14 (min P=1.28×10−12 at rs3788766), chr Xq23-24 

and SLC26A9 (min P=9.88×10−9 at rs4077468), chr 1q32.1 accounted for ~5% of the phenotypic 

variability, and were replicated in an independent patient collection (n=2,372; P=0.001 and 0.0001 

respectively). By incorporating that disease-causing mutations in CFTR alter electrolyte and fluid 

flux across epithelia into an hypothesis-driven genome-wide analysis (GWAS-HD), we identified 

the same SLC6A14 and SLC26A9 associated SNPs, while establishing evidence for the 

involvement of SNPs in a third solute carrier gene, SLC9A3. In addition, GWAS-HD provided 

evidence of association between meconium ileus and multiple constituents of the apical plasma 

membrane where CFTR resides (P=0.0002, testing 155 apical genes jointly and replicated, 
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P=0.022). These findings suggest that modulating activities of apical membrane constituents could 

complement current therapeutic paradigms for cystic fibrosis.

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene1. CFTR is a chloride channel located on the apical membrane of 

epithelia, where ion conduction and solute trafficking contribute to the regulation of 

transepithelial fluid flow. Individuals with the same loss-of-function CFTR mutations have 

variable disease severity, and differentially affected CF-associated organs including lung, 

pancreas, liver, intestines, and vas deferens; thus additional features, including other genes 

(referred to as modifier genes) may affect disease pathophysiology. Approximately 15% of 

CF patients have severe intestinal obstruction at birth, a complication known as meconium 

ileus2. Meconium ileus develops in utero, and presents following birth with complete 

intestinal obstruction that requires either medical or surgical intervention. This neonatal 

complication is highly indicative of CF, occurs in either sex, displays notable heritability 

exceeding 88%3, and is likely minimally affected by environmental influences.

The North American CF Gene Modifier Consortium has accumulated 3,763 participants 

with ‘severe’ (pancreatic exocrine insufficient) CFTR alleles and genome-wide genotype 

data at 543,927 SNP loci4,5 (Table 1 and Online Methods). The definition of meconium 

ileus was consistent within the consortium and was recorded following rigorous chart 

review. A conventional GWAS for meconium ileus used a generalized estimating equations 

(GEE) model6 to include collected sibling-pairs, and led to five genome-wide significant 

SNPs (P<5×10−8)7 from two regions that include SLC26A9 on chromosome 1 and SLC6A14 

on chromosome X (Fig. 1, Supplementary Fig. 1, Table 2; sex-specific results in 

Supplementary Table 1). CFTR was not a significant confounder or effect modifier when 

incorporated in the GWAS (Supplementary Fig. 2 and Supplementary Table 2), indicating 

SLC6A14 and SLC26A9 are independent contributors to meconium ileus. We then replicated 

the associations in SLC6A14 (min P=0.001) and SLC26A9 (min P=0.0001) with meconium 

ileus in an independent combined collection from North America and France (Table 2).

The signal intensity plots of the associated SNPs reflected autosomal- and X-associated 

SNPs at SLC26A9 and SLC6A14, respectively. Imputation analysis using MACH and 

minimac8,9 identified the same regions of association as the genotyped SNPs (Online 

Methods, Supplementary Fig. 3). The five associated SNPs in SLC6A14 and two in 

SLC26A9 (Fig. 1b and 1c) are positioned just upstream of their respective transcription start 

sites such that binding of activating or repressing transcription factors may be affected as 

highlighted by ENCODE data10 (data not shown). Neither SLC6A14 nor SLC26A9 coding 

regions exhibit evidence for CNVs; however, there is a gap in the reference sequence >10 kb 

upstream of the SLC26A9 locus.

The seven SNPs genotyped (Table 2) in the two genes account for <5% of the meconium 

ileus variation, estimated by pseudo R-squared11, likely reflecting the common problems in 

association studies of locus heterogeneity and low power given the available sample size. 

Whereas conventional GWAS is often considered for complex disease mapping, modifier 

gene studies could incorporate disease etiology and pathobiology information to increase 

power and account for heterogeneity. To do so, we proposed application of GWAS with 
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consideration of a hypothesis (and so is hypothesis-driven; GWAS-HD) to systematically 

prioritize SNPs for genome-wide analysis. The highest priority markers are also evaluated as 

a set to test the statistical significance of the hypothesis used for prioritization 

(Supplementary Fig. 4).

The GWAS-HD prioritization in this CF application is based on the knowledge that a major 

source of CF pathophysiology is impaired fluid and electrolyte flux in epithelia of CF-

affected organs. The polarized epithelial layer forms a highly selective barrier between 

organ and ductal interfaces. Transepithelial ‘function’ is achieved by cell polarization 

whereby many determinants and regulators of fluid, solute and ion transport reside at the 

apical membrane alongside CFTR, with contributing features from basolateral surfaces. We 

have shown in a mouse model that CFTR function in the gastrointestinal epithelium is 

critical for preventing intestinal obstructions12. Thus, we hypothesized that with loss of 

CFTR, (genetic) variation in other apical membrane constituents could modify CF 

phenotypes, such as meconium ileus.

A list of 157 gene products (Fig. 2 and Supplementary Table 3) was annotated as localized 

to the apical plasma membrane using AmiGO13 with Gene Ontology data14,15. CFTR and 

many solute transporters were included. However, the brush border membrane protein 

SLC6A14 was not listed, reflecting the high specialization of its corresponding intestinal 

cavity and a limitation of the GO annotation that we accepted without additional curation to 

avoid bias. In total, 3,814 GWAS SNPs were within ±10 kb of the boundaries of 155 genes 

(NCBI36/hg18); 2 genes were not tagged by any of the GWAS SNPs.

To implement the GWAS-HD for meconium ileus using the apical hypothesis, we first 

prioritized the genome-wide markers by assigning the 3,814 SNPs of the apical genes to a 

high priority group and all remaining genome-wide SNPs to a low priority group. We then 

performed two statistical analyses (Supplementary Fig. 4 and Online Methods). The first, 

analogous to a conventional GWAS, was to conduct single-SNP association analysis using 

all of the 543,927 GWAS SNPs at the genome-wide level, however after up-weighting the 

3,814 apical SNPs via the SFDR control.16 The second analysis, focusing only on the 3,814 

high priority SNPs using a multi-SNP/gene analysis, tested the prioritization hypothesis 

itself to determine if multiple proteins present on the apical plasma membrane contribute to 

meconium ileus susceptibility.

As in the conventional GWAS, SNPs from SLC6A14 showed the strongest evidence for 

association with meconium ileus in the single-SNP GWAS-HD analysis (Supplementary 

Fig. 5), despite not being in the high priority group, reflecting the robustness of SFDR17. In 

addition, SNPs from SLC26A9, and two additional apical genes, ATP2B2 and SLC9A3, 

showed association evidence with q values <0.05 (Table 3). A gene-based analysis (Online 

Methods) of ATP2B2 (P=0.0006) and SLC9A3 (P=0.0001) indicated evidence for allelic 

heterogeneity after comparing results with single-SNP analysis (Table 3). SLC9A3 was 

replicated in the French cohort (P=0.017) while ATP2B2 was not (P=0.283) 

(Supplementary Table 3).
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Next, restricting analysis to the 3,814 SNPs annotated to the 155 apical genes (which does 

not include SLC6A14), we tested the apical prioritization hypothesis as part of the GWAS-

HD. Here we observed genome-wide significant evidence for association between 

meconium ileus and multiple constituents of the apical plasma membrane (permutation 

P=0.0002, testing all 3,814 SNPs jointly and not subject to multiple hypothesis testing (Fig. 

2a and 2b)). Even with the exclusion of SLC26A9 (as well as SLC6A14), the apical 

hypothesis remained significant (P=0.0058). Thus, GWAS-HD further established the 

involvement of other genes coding for apical constituents despite insufficient power to 

detect individual SNPs, even within the context of our prioritized GWAS. For comparison, 

we also constructed a null hypothesis list of membrane-localized genes. As expected, the 

224 GO-annotated nuclear envelope genes tagged by 3,537 GWAS SNPs showed no 

relationship with meconium ileus (permutation P=0.4639; Fig. 3).

The French cohort with genome-wide data provided independent validation of the apical 

hypothesis (permutation P=0.022; Fig. 2c and 2d; Online Methods). The statistical 

significance of this gene set (which excludes SLC6A14) in the French cohort remained after 

further excluding SLC26A9 (P=0.021) and then both SLC26A9 and SLC9A3 (P=0.023). 

Although analysis of the apical hypothesis in a larger independent cohort should be 

considered as part of future efforts, the replication in the smaller French cohort supports a 

(common) mechanism of contributing genes, even though the responsible gene variants 

across the two datasets may not be the same.

To determine which apical genes were driving the association, the degree of genetic 

heterogeneity in meconium ileus, and the common contributors across the French and North 

American samples, we implemented Lasso18. Using the North American sample, we jointly 

analyzed all 3,740 SNPs available in the apical genes (which include SLC26A9 and 

SLC9A3), and SLC6A14 (Online Methods), that were not in perfect linkage disequilibrium. 

Forty-eight SNPs spanning 36 different genes were retained by Lasso in the multivariate 

regression model (Supplementary Table 3). These SNPs jointly explained ~17% of the 

meconium ileus variation in the North American sample. The percentage explained by the 

same 48 SNPs in the French sample was 8.1% (Online Methods), presumably due to the 

smaller sample size and genetic heterogeneity. We then tested the significance of a score for 

each individual in the French cohort constructed from a weighted sum of the number of risk 

alleles (defined in the North American sample) across the 48 SNPs19. The significant 

association between meconium ileus and this score (P=0.0137; Online Methods) provided 

additional complimentary evidence of common contributors between the two cohorts, with 

SNPs in SLC9A3 and SLC6A14 being two specific examples.

In summary, conventional GWAS identified SNPs in SLC6A14 and SLC26A9 as 

significantly associated with meconium ileus. GWAS-HD single-SNP analysis identified the 

same SNPs in SLC6A14 and SLC26A9, as well as SNPs in SLC9A3; and multi-SNP analysis 

provided evidence that multiple constituents of the apical plasma membrane are collectively 

associated with meconium ileus, yielding considerable additional information beyond single 

SNP/gene associations. GWAS-HD can be applied to other Mendelian disorders, or even 

complex traits provided there is a biologically-based hypothesis and participating relevant 

genes can be compiled.
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Although gene prioritization has been used in other approaches such as pathway or gene 

enrichment analyses20–22, GWAS-HD involves key differences. First, in contrast to the 

previous inclusion/exclusion approaches where all genotyped SNPs/genes are not analyzed 

simultaneously, GWAS-HD performs parallel single-SNP analysis of all GWAS SNPs, and 

multi-SNP/gene analysis focusing on the set of SNPs/genes of interest. The prioritized 

single-SNP analysis interrogates all available SNPs via the SFDR control, yet enables 

increased statistical power for regions favoured a priori. For example, SLC6A14 would be 

omitted by inclusion/exclusion approaches, yet it remained the highest ranked gene for 

association with meconium ileus in GWAS-HD. Second, methods such as interactive 

pathway analysis can be restrictive because contributing genes/proteins must relate to each 

other via direct or indirect links, which may be disturbed when a cog component (such as 

CFTR) is dysfunctional in the disease state. While gene products that participate in 

maturation or delivery of CFTR may be contributory, consideration of local components of 

processes that may compensate for the ion and fluid flow disturbance in CF is enabled in the 

apical hypothesis. Third, distinct from an exhaustive search of all plausible interactive 

pathways, GWAS-HD focuses on a single biological hypothesis and provides statistical 

significance for all genes involved jointly, alleviating the multiple testing burden.

It should be noted that the specific statistics or models used in our GWAS-HD application 

such as SFDR, Lasso, and the sum and score statistics may not be the most powerful ones in 

any specific setting. For example, the adaptive rank truncated product statistic23 could be 

used to identify the common subset of associated apical genes across two samples; and there 

are alternative weighting and prioritization approaches24.

The SLC9A3 gene codes for a sodium/hydrogen exchanger that when disrupted has been 

shown to decrease intestinal obstructions in a CF mouse model25. SLC6A14 codes for a 

sodium- and chloride-dependant neutral and basic amino acid transporter26,27. SLC26A9 

encodes an anion transporter, likely a chloride channel with multiple modes that include 

chloride/bicarbonate exchanger and sodium-anion cotransporter capabilities28. It has also 

been reported to physically interact with CFTR29 and be influenced by CFTR activity, at 

least in lung-related tissues30.

It is notable that SLC9A3 has previously been associated with infections and pulmonary 

function in CF31. In the consortium discovery sample, rs6864158 (MAF=0.43) in SLC9A3 

was associated with both the lung (P=0.0003, analyzed previously5) and meconium ileus 

(P=0.0001); this provides evidence that some genes may play a role in multiple CF co-

morbidities. Both SLC6A14 and SLC26A9 are robustly expressed in human lung epithelia, 

sweat gland, as well as intestinal epithelia as measured by RT-PCR (not shown). We 

anticipate that meconium ileus modifier genes may also influence early pathology in other 

CF-affected organs, and thus could provide important insights into the mechanisms of CF 

disease severity and co-morbidities.

These findings collectively have important practical implications for CF, where therapeutic 

strategies should consider pharmacologic modulation of epithelial function, in 

complementation with paradigms aimed at directly improving function or delivery of the 

mutated CFTR gene product to the apical membrane32.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Contributing North American CF Centers and Principal Investigators

Aaron,S., Ottawa General Hospital, Ottawa, Canada/Accurso,F., University of Colorado 

Health Sciences Center, CO/Acton,J., Cincinnati Children's Hospital and Medical Center, 

OH/Ahrens,R., University of Iowa Hospitals & Clinics, IA/Aljadeff,G., Lutheran General 

Children's Hospital, IL/Allard,C., Hôpital de Chicoutimi, Chicoutimi, Canada/Amaro,R., 

University of Texas at Tyler Health Center, TX/Anbar,R., SUNY Upstate Medical 

University, NY/Anderson,P., University of Arkansas, AR/Atlas,A., Morristown Memorial 

Hospital, NJ/Bell,S., The Prince Charles Hospital, Australia/Berdella,M., St. Vincents 

Hospital & Medical Center, NY /Berthiaume,Y., Hôtel-Dieu De Montréal/Biller,J., 

Children's Hospital of Wisconsin, WI/Bishop,G., Saint John Regional Hospital, Saint John, 

Canada/Bjornson,C., Alberta Children’s Hospital, Calgary, Canada/Black,H., Asthma & 

Allergy Specialists, Charlotte, NC/Black,P., Children's Mercy Hospital, MO/Boas,S., 

Children's Asthma Respiratory&Exercise Specialists, IL/Boland,M., Children’s Hospital of 

Eastern Ontario, Ottawa, Canada/Borowitz,D., Women & Children's Hospital of Buffalo, 

NY/Boswell,R., University of Tennessee, TN/Boucher,J., Centre Hospitalier Régional de 

Rimouski, Rimouski, Canada/Bourke,B., Our Lady’s Children Hospital, Ireland/
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Bowman,C.M., Medical University of South Carolina, SC/Boyle,M., Johns Hopkins 

Hospital, MD/Brown,C., California Pacific Medical Center, CA/Brown,D., Pediatric 

Pulmonary Associates., SC/Brown,N., University of Alberta Hospitals, Edmonton, Canada/

Brusky,J., University Hospital, Saskatoon, Canada/Caffey,L.F., University of New Mexico, 

NM/Cantin,A., Centre hospitalier universitaire de Sherbrooke, Fleurimont, Sherbrooke, 

Canada/Casciaro,R., Istituto G. Gaslini, Italy/Castellani,C., Azienda Ospedaliera de Verona, 

Italy/Chatfield,B., University of Utah Health Sciences Center, UT/Chesrown,S., University 

of Florida, FL/Chilvers,M., B.C. Children’s Hospital, Vancouver, Canada/Chipps,B., Sutter 

Medical Center, CA/Cipolli,M., Azienda Ospedaliera de Verona, Italy/Clancy,J.P., 

University of Alabama at Birmingham, AL/Cohen,R., Kaiser Permanente, OR/Colombo,J., 

University of Nebraska Medical Center, NE/Cronin,J., Women & Children's Hospital of 

Buffalo, NY/Cruz,M., St. Mary's Medical Center, FL/Cunningham,J., Cook Children's 

Medical Center, TX/Davidson,G., B.C. Children’s Hospital, Vancouver, Canada/Davies,J, 

University of New Mexico, NM/Davies,L., University of New Mexico, SOM, NM/

Debray,D., Centre Hospitalier Universitaire de Bicêtre, France/DeCelie-Germana,J., 

Schneider Children's Hospital, NY/Devenny,A., Royal Hospital for Sick Children, Scotland/

DiMango,E., Columbia University Medical Center, NY/Doornbos,D., Via-Christi, St. 

Francis Campus, KS/Dozor,A., New York Medical College-Westchester Medical Center, 

NY/Dunitz,J., University of Minnesota, MN/Egan,M., Yale University SOM, CT/Eichner,J., 

Great Falls Clinic, MT/Elliot,G., Virginia Commonwealth University, Virginia/Farrell,J., 

Janeway Child Health Centre, St. John’s, Canada/Ferkol,T., St. Louis Children's Hospital, 

MO/Fiel,S., Morristown Memorial Hospital, NJ/Flume,P., Medical University of South 

Carolina, SC/ Freitag,A.,Chedoke-McMaster Hospital, Hamilton, Canada/ Franco,M., 

Miami Children's Hospital, FL/Froh,D., University of Virginia Health System, VA/

Garey,N., Saint John Regional Hospital, Saint John, Canada/Geller,D., Nemours Children's 

Clinic Orlando, FL/Gershan,W., Children's Hospital of Wisconsin, WI/Gibson,R., 

Children’s Hospital & Regional Medical Center, WA/Giusti,R., Long Island College 

Hospital, NY/Gjevre,J., University Hospital, Saskatoon, Canada/Gondor,M., University of 

South Florida, FL/Gong,G., Phoenix Children's Hospital, AZ/Goulet,S., Centre Hospitalier 

Régional de Rimouski, Rimouski, Canada/Guill,M., Medical College of Georgia, GA/

Gutierrez,H., University of Alabama at Birmingham, AL/Hadeh,A., Drexel University 

College of Medicine, PA/Hardy,K., Children's Hospital - Oakland, CA/Henderson,K., 

Janeway Child Health Centre, St. John’s, Canada/Hiatt,P., Texas Children's Hospital, TX/

Hicks,D., Children's Hospital of Orange County, CA/Holmes,B., Regina General Hospital, 

Regina, Canada/Holsclaw,D., University of Pennsylvania, PA/Holzwarth,P., St. Vincent 

Hospital - Genetics, WI/Honicky,R., Michigan State University, MI/Howenstine,M., Riley 

Hospital for Children, IN/Hughes,D., IWK Health Centre, Halifax, Canada/Jackson,M., St. 

Mary’s Hospital, Kitchener, Canada/James,P., Lutheran Hospital, IN/ Jenneret A., Hôtel 

Dieu de Montréal, Montréal, Canada/Joseph,P., University of Cincinnati, OH/Kanga,J., 

University of Kentucky, KY/Katz,M., Baylor College of Medicine, TX/Kent,S., Victoria 

General Hospital, Victoria, Canada/Kepron,W., Health Sciences Centre, Winnipeg, Canada/

Knowles,M., University of North Carolina at Chapel Hill, NC/Konig,P., University of 

Missouri-Columbia, MO/Konstan,M., Case Western Reserve University, OH/ Kovesi,T., 

Children’s Hospital of Eastern Ontario, Ottawa, Canada/Kramer,J., Oklahoma Cystic 

Fibrosis Center, OK/Kraynack,N., Children's Hospital Medical Center of Akron, OH/
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Kumar,V., Laurentian Hospital, Sudbury, Canada/Lacaille,F., Hôpital Necker-Enfants 

Malades, France/Lahiri,T., Fletcher Allen Health Care, VT/Landon,C., Pediatric Diagnostic 

Center, CA/Lands,L., Montréal Children’s Hospital, Montréal, Canada/Lapin,C., 

Connecticut Children's Medical Center, CT/Larj,M., Wake Forest University Baptist Med. 

Ctr., NC/Lavoie,A., Hôtel-Dieu De Montréal/Ledbetter,J., TC Thompson Children's 

Hospital, TN/Lee,R., Naval Medical Center - Portsmouth, VA/Leigh,M., University of 
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Figure 1. 
Meconium Ileus GWAS identifies genome-wide significant SNPs. Association analysis was 

performed on all SNPs with minor allele frequencies > 2% that passed QC criteria (Online 

Methods).

(a) Genome-wide Manhattan plot for meconium ileus. The black solid line corresponds to 

the genome-wide significance threshold7 (P<5×10−8), and the black dashed line to the 

suggestive association threshold, expected once per genome scan (P 

<1/543,927=1.84×10−6). A total of five SNPs in two regions (SLC6A14 on chromosome X, 

and SLC26A9 on chromosome 1) have association evidence exceeding the genome-wide 

threshold. The SNPs, rs4077468 and rs4077469 are in perfect LD and appear as one SNP as 

they are separated by only 128bp.

(b) Regional plot for SLC26A9. LocusZoom viewer was used to display the association 

evidence around SLC26A9 based on NCBI Build 36/hg18. Symbol coloring reflects 

HapMap CEU LD r2 values with the most significant SNP. The significant SNPs, 

rs4077468, rs7419153 and rs12047830 (Table 2), occur 2.17 kb, 4.72 kb and 4.12 kb 

upstream, respectively, of the transcription start site. The significant SNP, rs7512462, occurs 

in intron 5. A gap occurs in the genomic sequence between the SLC26A9 and FAM72A 

genes in both NCBI36.3 and GRCh37 primary reference assemblies.
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(c) Regional plot for SLC6A14. The association evidence around SLC6A14 was displayed as 

above. Rs3788766 (Table 2) is positioned 0.95 kb upstream of the transcription start site and 

is within the binding site of the CEBPB transcription factor as annotated by ENCODE33 (not 

shown). The mRNA transcript corresponding to CXorf61 is downstream (3’) of SLC6A14.
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Figure 2. 
The apical membrane hypothesis identifies genes associated with meconium ileus. A list of 

157 genes was annotated using the AmiGO tool13 (version 1.7; March 28, 2010) based on 

the Gene Ontology data14 (GO:00163245) using the cell location search phrase “apical 

plasma membrane” with restriction to Homo sapiens. In total, 3,814 GWAS SNPs are within 

±10 kb of the boundaries of 155 genes (NCBI36/hg18). Two genes were not tagged by any 

of the GWAS SNPs; SLC6A14 was not annotated to the apical plasma membrane.

(a) QQ-plot of the apical SNPs in the discovery sample. The observed association statistics 

(red), and the statistics calculated from the 10,000 phenotype-permutated replicates are 

shown (light gray).

(b) Statistical significance of the apical membrane hypothesis in the discovery sample. 

Statistical significance (permutation P = 0.0002) was established via a sum statistic, 

summing the association evidence (Wald χ2
1 statistic) over all the 3,814 SNPs with the 
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observed sum statistic displayed as a vertical line (red), and the 10,000 permutation-based 

sum statistics displayed as a histogram (light gray).

(c) QQ-plot of the apical SNPs in the replication sample. The SNPs in the French replication 

cohort were required to have MAF > 6% because of the reduced sample size (1232 × 6% ≈ 

3763 × 2%). In total 3,420 GWAS SNPs are within ±10 kb of the boundaries of 154 apical 

genes.

(d) Statistical significance of the apical membrane hypothesis in the French replication 

sample (permutation P=22/1,000=0.022).
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Figure 3. 
Assessment of the nuclear envelope null hypothesis. A list of 231 genes was generated from 

the nuclear envelope as defined by GO annotation (GO:0005635) similarly as for the apical 

membrane list. In total, 3,537 GWAS SNPs are within ±10 kb of the boundaries of 224 

tagged genes (NCBI36/hg18). A priori, the nuclear envelope list should not contain genes 

associated with meconium ileus (under the null of no association).

(a) QQ-plot of the nuclear envelope gene SNPs in the discovery sample.

(b) Statistical significance of the nuclear envelope hypothesis in the discovery sample. 

Statistical evaluation indicates that genes listed in the nuclear envelope are, as expected, not 

significantly associated with meconium ileus (permutation P=4639/10,000=0.4639).
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