1,976 research outputs found

    Increasing durability of sidetrack cement stone

    Get PDF

    Subgap states in dirty superconductors and their effect on dephasing in Josephson qubits

    Full text link
    We present a theory of the subgap tails of the density of states in a diffusive superconductor containing magnetic impurities. We show that the subgap tails have two contributions: one arising from mesoscopic gap fluctuations, previously discussed by Lamacraft and Simons, and the other associated to the long-wave fluctuations of the concentration of magnetic impurities. We study the latter both in small superconducting grains and in bulk systems [d=1,2,3d=1,2,3], and establish the dimensionless parameter that controls which of the two contributions dominates the subgap tails. We observe that these contributions are related to each other by dimensional reduction. We apply the theory to estimate the effects of a weak concentration of magnetic impurities [1p.p.m\approx 1 {\rm p.p.m}] on the phase coherence of Josephson qubits. We find that at these typical concentrations, magnetic impurities are relevant for the dephasing in large qubits, designed around a 10μm10 {\rm \mu m} scale, where they limit the quality factor to be Q<104105Q<10^4-10^5.Comment: 13 pages, 1 figur

    Optical signature of sub-gap absorption in the superconducting state of Ba(Fe,Co)2As2

    Full text link
    The optical conductivity of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 shows a clear signature of the superconducting gap, but a simple ss-wave description fails in accounting for the low frequency response. This task is achieved by introducing an extra Drude peak in the superconducting state representing sub-gap absorption, other than thermally broken pairs. This extra peak and the coexisting ss-wave response respect the total sum rule indicating a common origin for the carriers. We discuss the possible origins for this absorption as (i) quasiparticles due to pair-breaking from interband impurity scattering in a two band s±s_{\pm} gap symmetry model, which includes (ii) the possible existence of impurity levels within an isotropic gap model; or (iii) an indication that one of the bands is highly anisotropic.Comment: 5 pages, 4 figure

    An alternative search for the electron capture of Te-123

    Full text link
    A search for the electron capture of Te-123 has been performed using CdZnTe detectors. After a measuring time of 195 h no signal could be found resulting in a lower half-life limt of T1/2>3.21016T_{1/2} > 3.2 \cdot 10^{16} yrs (95 % CL) for this process. This clearly discriminates between existing experimental results which differ by six orders of magnitude and our data are in strong favour of the result with longer half-lifes.Comment: 2 pages, 2 eps-figures, reanalysis of data set

    Calculation of Field Characteristics in Periodic Nanostructures from Composite Elements with Activated Plasmon Modes

    Get PDF
    Modeling of the electromagnetic field of the optical frequency in periodic structures composed of parallel conducting nanorods as well as composite spherical nanoparticles with an excitonogenic envelope in hexagonal 2d-lattices - in the quasistatic approximation and the FDTD method. The qualitative agreement of these approaches is shown when calculating field characteristics in lattices of cylindrical elements

    A purely reflective large wide-field telescope

    Full text link
    Two versions of a fast, purely reflective Paul-Baker type telescope are discussed, each with an 8.4-m aperture, 3 deg diameter flat field and f/1.25 focal ratio. The first version is based on a common, even asphere type of surface with zero conic constant. The primary and tertiary mirrors are 6th order aspheres, while the secondary mirror is an 8th order asphere (referred to here for brevity, as the 6/8/6 configuration). The D_80 diameter of a star image varies from 0''.18 on the optical axis up to 0''.27 at the edge of the field (9.3-13.5 mcm). The second version of the telescope is based on a polysag surface type which uses a polynomial expansion in the sag z, r^2 = 2R_0z - (1+b)z^2 + a_3 z^3 + a_4 z^4 + ... + a_N z^N, instead of the common form of an aspheric surface. This approach results in somewhat better images, with D_80 ranging from 0''.16 to 0''.23, using a lower-order 3/4/3 combination of powers for the mirror surfaces. An additional example with 3.5-m aperture, 3.5 deg diameter flat field, and f/1.25 focal ratio featuring near-diffraction-limited image quality is also presented.Comment: 14 pages, 6 figures; new examples adde

    Optimal Computation of Avoided Words

    Get PDF
    The deviation of the observed frequency of a word ww from its expected frequency in a given sequence xx is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis. The value of the standard deviation of ww, denoted by std(w)std(w), effectively characterises the extent of a word by its edge contrast in the context in which it occurs. A word ww of length k>2k>2 is a ρ\rho-avoided word in xx if std(w)ρstd(w) \leq \rho, for a given threshold ρ<0\rho < 0. Notice that such a word may be completely absent from xx. Hence computing all such words na\"{\i}vely can be a very time-consuming procedure, in particular for large kk. In this article, we propose an O(n)O(n)-time and O(n)O(n)-space algorithm to compute all ρ\rho-avoided words of length kk in a given sequence xx of length nn over a fixed-sized alphabet. We also present a time-optimal O(σn)O(\sigma n)-time and O(σn)O(\sigma n)-space algorithm to compute all ρ\rho-avoided words (of any length) in a sequence of length nn over an alphabet of size σ\sigma. Furthermore, we provide a tight asymptotic upper bound for the number of ρ\rho-avoided words and the expected length of the longest one. We make available an open-source implementation of our algorithm. Experimental results, using both real and synthetic data, show the efficiency of our implementation

    Tail States in Disordered Superconductors with Magnetic Impurities: the Unitarity Limit

    Full text link
    When subject to a weak magnetic impurity distribution, the order parameter and quasi-particle energy gap of a weakly disordered bulk s-wave superconductor are suppressed. In the Born scattering limit, recent investigations have shown that `optimal fluctuations' of the random impurity potential can lead to the nucleation of `domains' of localised states within the gap region predicted by the conventional Abrikosov-Gor'kov mean-field theory, rendering the superconducting system gapless at any finite impurity concentration. By implementing a field theoretic scheme tailored to the weakly disordered system, the aim of the present paper is to extend this analysis to the consideration of magnetic impurities in the unitarity scattering limit. This investigation reveals that the qualitative behaviour is maintained while the density of states exhibits a rich structure.Comment: 18 pages AMSLaTeX (with LaTeX2e), 6 eps figure

    Nucleophilic Substitution of Nitro Group in Dihydroazole[5,1-c][1,2,4]triazines

    Full text link
    This work was supported by the Russian Foundation for Basic Research, project # 19-33-90086
    corecore