808 research outputs found

    The American Board of Thoracic Surgery: Update

    Get PDF

    Temperature Dependence of Damping and Frequency Shifts of the Scissors Mode of a trapped Bose-Einstein Condensate

    Full text link
    We have studied the properties of the scissors mode of a trapped Bose-Einstein condensate of 87^{87}Rb atoms at finite temperature. We measured a significant shift in the frequency of the mode below the hydrodynamic limit and a strong dependence of the damping rate as the temperature increased. We compared our damping rate results to recent theoretical calculations for other observed collective modes finding a fair agreement. From the frequency measurements we deduce the moment of inertia of the gas and show that it is quenched below the transition point, because of the superfluid nature of the condensed gas.Comment: 5 pages, 4 figure

    The stochastic Gross-Pitaevskii equation II

    Full text link
    We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is based on a quasi-classical Wigner function representation of a "high temperature" master equation for a Bose gas, which includes only modes below an energy cutoff E_R that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provide noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation, and by the feasibility of its numerical implementation.Comment: 24 pages of LaTeX, one figur

    The calculated and observed ionospheric properties during Atmospheric Explorer-C satellite crossings over Millstone Hill

    Full text link
    The Atmospheric Explorer-C (AE-C) satellite passed almost directly over the Millstone Hill incoherent scatter radar station on 14 February 1974 and passed within the near vicinity of the station on 15 February 1974. Measurements of ionospheric and atmospheric properties were made simultaneously by the incoherent scatter radar and the AE-C satellite instruments. The incoherent scatter radar measured vertical profiles of the electron and ion temperatures and electron density and these data were used to derive a neutral gas temperature profile. The AE-C satellite measured the electron and ion densities and electron and ion temperatures, neutral gas composition, solar EUV flux, photoelectron spectra, the 6300 A volume emission rate profile and the distribution of NO along the satellite path. These simultaneous measurements provide a consistent set of data to examine current F-region theory in the daytime ionosphere. We used a time-dependent coupled model of the ionospheric E- and F-region to calculate the ionospheric properties over Millstone Hill at the times of the AE-C crossings and then compared the calculated structure to the observed structure. The results show good agreement between the incoherent scatter radar measurements and the model calculations. There is also good agreement among satellite and incoherent scatter radar measurements and model calculations for the altitude of the satellite crossing, 161 km. The satellite measurements along the orbital path, however, reveal considerable horizontal gradients in the measured ionospheric properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22695/1/0000249.pd

    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales

    Get PDF
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx\u3c5 \u3ekm) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated

    Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations

    Full text link
    We study the low-energy collective oscillations of a dilute Bose gas at finite temperature in the collisionless regime. By using a time-dependent mean-field scheme we derive for the dynamics of the condensate and noncondensate components a set of coupled equations, which we solve perturbatively to second order in the interaction coupling constant. This approach is equivalent to the finite-temperature extension of the Beliaev approximation and includes corrections to the Gross-Pitaevskii theory due both to quantum and thermal fluctuations. For a homogeneous system we explicitly calculate the temperature dependence of the velocity of propagation and damping rate of zero sound. In the case of harmonically trapped systems in the thermodynamic limit, we calculate, as a function of temperature, the frequency shift of the low-energy compressional and surface modes.Comment: 26 pages, RevTex, 8 ps figure

    Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes) are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand.</p> <p>Results</p> <p>The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (<b>RAMMCAP</b>) was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes".</p> <p>Conclusion</p> <p>RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from <url>http://tools.camera.calit2.net/camera/rammcap/</url>.</p
    corecore