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On Numerical  Evaluation of Two-Dimensional  Phase  Integrals 
H. A. LESSOW, W. V. T. RUSCH, AND 

H. SCHJER-JACOBSEN 

Abstract-The  relative  advantages of several  common  numerical 
integration  algorithms  used  in  computing  two-dimensional  phase  integrals 
are  evaluated. 

I. INTRODUCTION 
Two-dimensional integrals of complex integrands are com- 

monly encountered in antenna  and scattering theory as well as 
other technical disciplines. In many instances the behavior of the 
integral is dominated by a rapidly oscillating phase  function, 
whereas the amplitude is a relatively slowly varying function. A 
study has been undertaken to evaluate the relative advantages of 
several common numerical integration algorithms used in com- 
puting such two-dimensional phase integrals. Attention is re- 
stricted primarily to algorithms employing successive step-size 
halving in  conjunction with automatic testing to achieve a 
desired accuracy, as opposed to schemes using preprogrammed 
step sizes.  All test cases quoted in this paper have been run  on  an 
IBM 370/165 in single precision Fortran IV. 

11. CIRCULAR APERTURE 

The integral considered was 

In terms of aperture-antenna  theory  this  integral represents 
radiation  from a circular aperture with a constant  amplitude and 
phase distribution. The phase  function represents the relative 
path-length difference from points on  the  aperture to the field 
point.  This  integrand has been selected for this  study because it 
constitutes at  least part of every radiation integral and usually 
dominates the entire  phase characteristic, while at  the same time 
providing a closed-form result which can be used to determine 
the accuracy of the various  algorithms being studied. 

A.  Simpson and Romberg Integration' 

Two principal numerical  integration  algorithms were studied 
for  the circular  aperture. 

1) The first was Romberg  integration on  the inner and  outer 
integrals consecutively. The entries in the conventional Romberg 
T-table are shown in Table I, where the  Tare complex [2]. 

The Romberg  procedure was carried  out for each  inner one- 
dimensional integral until 

where E designated the testing criterion. If this equation was 
satisfied, the integral then proceeded to the  outer integral, 
treating the inner integral as  part of its integrand. 

2)  The second was Simpson's rule on  the inner and  outer 
integrals consecutively. The testing procedure was carried out 

TABLE I 
ROMBERG T-TABLE IN ONE-DIMENSIONAL INTEGRAL 

Number of 
Integrand Order of Approximation 
Samples 

r 2r i 1 h2 h4 h6 h8 hl 

(b) 

Fig. 1. Part of  integrand  for  circular  aperture, u = 5 .  (a) Real. (b) 
Imaginary. 

in the same  manner. However, the comparisons were made 
between consecutive entries in the second column of the T-table, 
which correspond to Simpson's rule. 

Both of the preceding algorithms make use of all previously 
evaluated integrand values. They both provide uniform  step 
size for  each one-dimensional integral. It was not considered 
necessary to apply higher densities of integration  steps over 
selected areas of the integral because the function is fairly uni- 
formly oscillatory without regions of rapidly varying amplitude 
or phase relative to  other regions. For example, the integrand is 
plotted in Fig. 1 as a function of p and 4, for u = 5,0 5 4 I K. 

A value of u = 20 corresponds to  an observation  point on  the 
sixth sidelobe, approximately six beamwidths from  the main 
beam peak. For such large values of I( the stationary  points 
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Fig. 2. (a) Error limits for circular aperture integration writh Simpson  and 
Romberg  algorithms, 1 5 I( 5 20. (b) Number of integrand  sample 

algorithms. 
points  for circular aperture integration  with  Simpson and  Romberg 

was the inner integral. All subsequent integrations were therefore 
carried out with the p-integral as the inner integral. 

Fig.  2(a)  is a plot of the  error (in percent) between the  true 
and numerical results for  the testing criterion E. Each pair of 
curves for  both  the Simpson and Romberg procedures indicates 
the upper and lower limits obtained  for integer values of u from 
1 to 20. The value of u = 7 was excluded because it lies very close 
to a null of J 1 ,  thus creating an exaggerated percent error from 
a moderate  absolute error. An investigation was made using other 
definitions of error  to avoid this  normalization problem (for 
example normalizing for the peak value) but with substantially 
the  same results reported in this paper. 
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Fig. 3. (a) Errors  for circular aperture integration  with  Ludwig and 

Ludwig  and  Simpson  algorithms. 
Simpson  algorithms.  (b) CPU time for circular aperture integration  with 

In general, the  error is significantly less than E until the Rom- 
berg results saturate  for very small E .  However, for realistic 
engineering applications  requiring accuracies in the range 0.1 to 
1.0 per cent, relatively large values of E are sufficient. 
I Fig. 2(b) is a plot of  the  total number of integrand  evaluations 
versus u for a given algorithm and a given E .  The  ordinate  thus 
provides a measure of relative execution time. 

If, for example, an expected average value of the accuracy of 
0.1 percent is desired, Fig. 2(a) indicates that  the Romberg 
algorithm  should  be used with E = 10 percent or  the Simpson 
algorithm  should be used with E = 1 percent. However, for 
greater values of u, there is a drastic increase in the time re- 
quired by the Romberg  algorithm, so that  the Simpson method 
is preferable (Fig. 2(b)). A plausible explanation for this phenom- 
enon is that large initial errors in the early  entries on  the diagonal 
of the Romberg T-table caused by large values of u continue to 
propagate  down the diagonal, whereas the Simpson results are 
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Fig. 4. (a) Error limits for square  aperture  with Romberg type 1 and 2 integation. (b), Number of integrand sample points 

for square aperture with Romberg type 1 integration. (c) Number of integrand sample pomts for square aperture  wlth Romberg 
type 2 integration. 

restricted to three localized entries in the first two columns of the 
T-table and early errors  have  no influence. Similar results may be 
obtained for  other values of E .  

€3. n e  Ludwig Algorithm 
A numerical integration  algorithm due  to Ludwig [3] con- 

ceptually similar to Filon's method, has been widely used to 
calculate the fields scattered from large reflectors. I t  expands the 
amplitude and phase of the integrand in linearized Taylor Series, 
and integrates the resulting integrand in closed form over re- 
latively large wavelength-sized subsections. Fig. 3(a) is a plot of 
the accuracy versus u when the integral is evaluated using a 
Ludwig-type algorithm with combinations of 4 (inner) and p 
(outer) integral steps, respectively, of 64 x 8, 64 x 16, and 

128 x 16. Also plotted are  the corresponding Simpson curves 
for E = 1 and 10 percent, both of which are consistently more 
accurate than  the Ludwig CUNS. 

Fig. 3(b) is a plot of the  total integral-evaluation time versus 
u for  the Ludwig algorithm with 64 x 8,64 x 16, and 128 x 16 
steps, and  also  for  the Simpson algorithm with E = 1 and 
10 percent. 

If attention is focused on the Ludwig 128 x 16 curve and  the 
Simpson curve with E = 10 percent, it appears from Fig. 3(a) 
that the resulting errors  are comparable  in the  total  range 
1 I u I 18 whereas the Simpson method requires significantly 
less computer  time (Fig. 3(b)), especially for low values of u. 
An overall comparison, considering both accuracy and time, 
gives the result that in virtually every case the Simpson results 
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are comparable to  or, in a majority of cases, preferable to  the 
Ludwig results. Consequently, the Ludwig method  should only 
be applied when radiation  patterns including the far-out side- 
lobes are calculated. 

111. RECTANGULAR APERTURE 

The radiation from a rectangular aperture with constant 
amplitude and phase  distribution may be represented by the 
integral 

This  integral has been evaluated with two different Romberg- 
type integrations [ 2 ] :  

1 )  inner and  outer integrals evaluated consecutively as  for  the 

2) simultaneous evaluation. 

Upper and lower limits of the resulting error  as a function of 
the testing criterion E are plotted in Fig. qa ) ,  u = t’ ranging from 
1 to 20. It is noticed that  for E = 10 percent the range of errors is 
about  equal for the two methods. For small values of E,  however, 
method 2 produces larger errors due to accumulation of round- 
off errors  and convergence did not occur for values of E less 
than  about 0.1 percent. Note  that  for a specific value of E, say 
10 percent, the average error is as low as 0.005 percent, whereas 
the average error in the circular-aperture case was 0.05 percent 
for  Romberg type 1 integration. 

circular aperture, 

Figs. 4(b) and (c) show the  number of integral sample  points 
versus 14 = u for the two Romberg integrations. The general 
tendency is that Romberg integration with method 1 requires 
fewer integration points than method 2 to produce a specified 
accuracy. 

Conclusively it should therefore be pointed out  that Romberg 
integration with inner and  outer integrals evaluated consecutively 
is preferable to simultaneous evaluation. 

IV. S-Y AND CONCLUSIONS 

A comparative study of some commonly used two-dimensional 
complex integration  methods has been carried out using circular 
and rectangular  aperture integrals as test cases. Attention has been 
restricted primarily to algorithms employing successive step-size 
halving in  conjunction with automatic testing to achieve a 
desired accuracy. For these methods  qualitative relations between 
specified and resulting accuracies have been established. However, 
the well-known Ludwig method has also been considered and 
compared to  the automatic  algorithms. For the main lobe  and the 
near-in sidelobes the most efficient method seems to be the 
Romberg  integration,  carried out consecutively on  the inner and 
outer integral. For further-out sidelobes the Simpson method 
seems to be preferable as well as in cases where extremely high 
accuracies are required. The Ludwig integration scheme should 
be applied  only when radiation  patterns including far-out side- 
lobes are  to be calculated, or in general when the relative phase 
of the  currents at  the field point is rapidly varying. 
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