15 research outputs found
Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΡΠ΅ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ² HaCaT Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ 1DE-Π³Π΅Π»Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
Using tandem mass spectrometry with electrospray ionization, a comparative analysis of HaCaT keratinocyte proteins was carried out before and after exposure of cells to sodium dodecyl sulfate (25 mg/ml) for 48 hours; proteins encoded by human chromosome 18 genes were chosen as the comparison proteins. A total of 2418 proteins were detected in the HaCaT immortalized human keratinocytes, 70% of these proteins were identified by two or more unique peptides. Panoramic mass spectrometry analysis identified 38 proteins encoded by chromosome 18 genes, 27 proteins were common to control HaCaT cells and HaCaT cells exposed to SDS. Using the Metascape database (https://metascape.org), an enrichment analysis of GO terms of the Biological Process category of chromosome 18 gene encoded proteins of HaCaT keratinocytes was performed before and after the SDS exposure. The SDS exposure resulted in a slight enrichment of the GO term "response to stimulus" (GO:0050896) and the related GO term "negative regulation of biological process" (GO:0048519). We found decreased expression levels of membrane proteins encoded by chromosome 18 genes related to cell-cell adhesion (GO:0098609), such as DSC1, DSC3, and DSG1. A decrease in the expression level of desmosomal cadherins is characteristic of malignant neoplasms developing from epithelial tissue cells of various internal organs, mucous membranes, and skin. The method of preparation of HaCaT keratinocyte samples used in this work increased the sensitivity of proteomic analysis of cell culture and made it possible to identify twice as many proteins in one gel strip as compared to the number of proteins (1284) in HaCaT samples subjected to osmotic shock and cleavage by trypsin in solution.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ², ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΎΠ»ΡΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ 0.2% Π΄ΠΎΠ΄Π΅ΡΠΈΠ»ΡΡΠ»ΡΡΠ°ΡΠ° Π½Π°ΡΡΠΈΡ (SDS), ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ΅ 1DE-Π³Π΅Π»Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ (SDS-PAGE Π±Π΅Π· ΡΡΠ°ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅ΠΌ Π³Π΅Π»Π΅) ΠΈ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΠΈ ΡΡΠΈΠΏΡΠΈΠ½ΠΎΠΌ Π² Π³Π΅Π»Π΅ Π΄Π»Ρ ΡΠ³Π»ΡΠ±Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΠΎΠΌΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ² ΠΠ°Π‘Π°Π’ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΠ΅ Π±Π΅Π»ΠΊΠ°. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°Π½Π΄Π΅ΠΌΠ½ΠΎΠΉ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΏΡΠ΅ΠΉΠ½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ (LC-MS/MS) ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ² ΠΠ°Π‘Π°Π’ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ SDS Π² ΡΡΠ±ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠ·Π΅ (25 ΠΌΠ³/ΠΌΠ») Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 48 Ρ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π±Π΅Π»ΠΊΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ±ΡΠ°Π½Ρ Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΡΠ΅ Π³Π΅Π½Π°ΠΌΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 18 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΡΠ΅Π³ΠΎ Π² ΠΈΠΌΠΌΠΎΡΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠ°Ρ
ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ ΠΠ°Π‘Π°Π’ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ 2418 Π±Π΅Π»ΠΊΠΎΠ², ΠΈΠ· Π½ΠΈΡ
ΠΎΠΊΠΎΠ»ΠΎ 70% ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΎ ΠΏΠΎ Π΄Π²ΡΠΌ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΠΏΡΠΈΠ΄Π°ΠΌ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΄Π°Π»ΠΎΡΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ 38 Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΡΡ
Π³Π΅Π½Π°ΠΌΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 18; ΠΈΠ· Π½ΠΈΡ
27 Π±Π΅Π»ΠΊΠΎΠ² Π±ΡΠ»ΠΈ ΠΎΠ±ΡΠΈΠΌΠΈ Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΠ°Π‘Π°Π’, ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π½ΡΡΡΡ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ SDS. Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±Π°Π·Ρ Π΄Π°Π½Π½ΡΡ
Metascape Π±ΡΠ» ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΈΠ½Π°ΠΌΠΈ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³Π΅Π½ΠΎΠ² (GO) ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ (biological process) Π±Π΅Π»ΠΊΠΎΠ² Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 18 ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ² ΠΠ°Π‘Π°Π’ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ SDS. ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ SDS ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΡ GO ΡΠ΅ΡΠΌΠΈΠ½Π° βΠΎΡΠ²Π΅Ρ Π½Π° ΡΡΠΈΠΌΡΠ»β (GO:0050896 - response to stimulus) ΠΈ ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ Ρ Π½ΠΈΠΌ GO ΡΠ΅ΡΠΌΠΈΠ½Π° βΠ½Π΅Π³Π°ΡΠΈΠ²Π½Π°Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²β (GO:0048519 - negative regulation of biological process). ΠΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΡΡ
Π³Π΅Π½Π°ΠΌΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 18, ΠΎΡΠ½ΠΎΡΡΡΠΈΡ
ΡΡ ΠΊ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π°Π΄Π³Π΅Π·ΠΈΠΈ (GO:0098609 - cell-cell adhesion), ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ DSC1, DSC3 ΠΈ DSG1. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π΄Π΅ΡΠΌΠΎΡΠΎΠΌΠ°Π»ΡΠ½ΡΡ
ΠΊΠ°Π΄Π³Π΅ΡΠΈΠ½ΠΎΠ² Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎ Π΄Π»Ρ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ ΠΈΠ· ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠΏΠΈΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΎΡΠ³Π°Π½ΠΎΠ², ΡΠ»ΠΈΠ·ΠΈΡΡΡΡ
ΠΎΠ±ΠΎΠ»ΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΆΠΈ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½Π½ΡΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΠΏΠΎΡΠΎΠ± ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠ΅ΡΠ°ΡΠΈΠ½ΠΎΡΠΈΡΠΎΠ² ΠΠ°Π‘Π°Π’ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΠ΅ Π³Π΅Π»Ρ Π² Π΄Π²Π° ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌΠΈ ΠΠ°Π‘Π°Π’, ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π½ΡΡΡΠΌΠΈ ΠΎΡΠΌΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΎΠΊΡ ΠΈ ΡΠ°ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΈΠΏΡΠΈΠ½ΠΎΠΌ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅
Comparative Study of Methanogenic Pathways in the Sediments of Thermokarst and Polygenetic Yamal Lakes
Comparative study of methanogen diversity and potential activity of different methanogenic pathways in the sediments of young thermokarst and mature polygenetic Yamal lakes was carried out. The hydrogenotrophic pathway of methanogenesis played an important role in methane formation in thermokarst lakes. The acetoclastic and methylotrophic pathways were also revealed there. In a polygenetic lake with a dissolved organic matter content closest to that of the thermokarst lakes, methanogenesis proceeded more intensively, and the relative abundance of methanogens, especially acetoclastic ones, was higher than in thermokarst lakes. The activity of methyl-reducing methanogens was also assumed there. Methanogens of the genera Methanothrix and Methanoregula, as well as representatives of the family Methanomassiliicoccaceae were identified in the sediments of all lakes. Methane-oxidizing bacteria (Methylobacter, Candidatus "Methylomirabilis") and archaea (Ca. "Methanoperedens") were also detected
On the Possibility of Aerobic Methane Production by Pelagic Microbial Communities of the Laptev Sea
The taxonomic diversity and metabolic activity of microbial communities in the Laptev Sea water column above and outside the methane seep field were studied. The concentrations of dissolved methane in the water column at both stations were comparable until the depth of the pycnocline (25 m). At this depth, local methane maxima were recorded, with the highest concentration (116 nM CH4) found at the station outside the methane seep field. Results of the 16S rRNA gene sequencing and measurements of the rates of hydrogenotrophic methanogenesis indicated the absence of methanogenesis caused by the methanogenic archaea in the pycnocline and in other horizons of the water column. The 16S rRNA-based analysis of microbial phylogenetic diversity, as well as radiotracer analysis of the rates of primary production (PP), dark CO2 assimilation (DCA), and methane oxidation (MO), indicated the functioning of a diverse community of pelagic microorganisms capable of transforming a wide range of organic compounds under oligotrophic conditions of the Arctic basin. Hydrochemical prerequisites and possible microbial agents of aerobic methane production via demethylation of methylphosphonate and decomposition of dimethylsulfoniopropionate using dissolved organic matter synthesized in the PP, DCA, and MO processes are discussed