15 research outputs found

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠΌΠ½ΠΎΠ³ΠΎ профиля ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² HaCaT с использованиСм 1DE-гСль концСнтрирования

    Get PDF
    Using tandem mass spectrometry with electrospray ionization, a comparative analysis of HaCaT keratinocyte proteins was carried out before and after exposure of cells to sodium dodecyl sulfate (25 mg/ml) for 48 hours; proteins encoded by human chromosome 18 genes were chosen as the comparison proteins. A total of 2418 proteins were detected in the HaCaT immortalized human keratinocytes, 70% of these proteins were identified by two or more unique peptides. Panoramic mass spectrometry analysis identified 38 proteins encoded by chromosome 18 genes, 27 proteins were common to control HaCaT cells and HaCaT cells exposed to SDS. Using the Metascape database (https://metascape.org), an enrichment analysis of GO terms of the Biological Process category of chromosome 18 gene encoded proteins of HaCaT keratinocytes was performed before and after the SDS exposure. The SDS exposure resulted in a slight enrichment of the GO term "response to stimulus" (GO:0050896) and the related GO term "negative regulation of biological process" (GO:0048519). We found decreased expression levels of membrane proteins encoded by chromosome 18 genes related to cell-cell adhesion (GO:0098609), such as DSC1, DSC3, and DSG1. A decrease in the expression level of desmosomal cadherins is characteristic of malignant neoplasms developing from epithelial tissue cells of various internal organs, mucous membranes, and skin. The method of preparation of HaCaT keratinocyte samples used in this work increased the sensitivity of proteomic analysis of cell culture and made it possible to identify twice as many proteins in one gel strip as compared to the number of proteins (1284) in HaCaT samples subjected to osmotic shock and cleavage by trypsin in solution.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ², основанного Π½Π° ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² присутствии 0.2% Π΄ΠΎΠ΄Π΅Ρ†ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π° натрия (SDS), ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ 1DE-гСль концСнтрирования (SDS-PAGE Π±Π΅Π· фракционирования Π² Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅ΠΌ Π³Π΅Π»Π΅) ΠΈ расщСплСнии трипсином Π² Π³Π΅Π»Π΅ для ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠΌΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² НаБаВ Π² ΠΎΠ΄Π½ΠΎΠΉ полосС Π±Π΅Π»ΠΊΠ°. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°Π½Π΄Π΅ΠΌΠ½ΠΎΠΉ масс-спСктромСтрии с элСктроспрСйной ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ (LC-MS/MS) ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² НаБаВ Π΄ΠΎ ΠΈ послС воздСйствия SDS Π² субтоксичСской Π΄ΠΎΠ·Π΅ (25 ΠΌΠ³/ΠΌΠ») Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 48 Ρ‡. Π’ качСствС Π±Π΅Π»ΠΊΠΎΠ² сравнСния Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π³Π΅Π½Π°ΠΌΠΈ хромосомы 18 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ВсСго Π² ΠΈΠΌΠΌΠΎΡ€Ρ‚Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚Π°Ρ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ НаБаВ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ 2418 Π±Π΅Π»ΠΊΠΎΠ², ΠΈΠ· Π½ΠΈΡ… ΠΎΠΊΠΎΠ»ΠΎ 70% ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΏΠΎ Π΄Π²ΡƒΠΌ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°ΠΌ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΠ°Π½ΠΎΡ€Π°ΠΌΠ½ΠΎΠ³ΠΎ масс-спСктромСтричСского Π°Π½Π°Π»ΠΈΠ·Π° ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ 38 Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π³Π΅Π½Π°ΠΌΠΈ хромосомы 18; ΠΈΠ· Π½ΠΈΡ… 27 Π±Π΅Π»ΠΊΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ для ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ НаБаВ, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚Ρ‹Ρ… Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ SDS. Π‘ использованиСм Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Metascape Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· обогащСния Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°ΠΌΠΈ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³Π΅Π½ΠΎΠ² (GO) ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ биологичСскиС процСссы (biological process) Π±Π΅Π»ΠΊΠΎΠ² хромосомы 18 ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² НаБаВ Π΄ΠΎ ΠΈ послС воздСйствия SDS. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ SDS ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½ΠΈΡŽ GO Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° β€œΠΎΡ‚Π²Π΅Ρ‚ Π½Π° стимул” (GO:0050896 - response to stimulus) ΠΈ связанного с Π½ΠΈΠΌ GO Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° β€œΠ½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Π°Ρ рСгуляция биологичСских процСссов” (GO:0048519 - negative regulation of biological process). Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сниТСниС уровня экспрСссии ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π³Π΅Π½Π°ΠΌΠΈ хромосомы 18, относящихся ΠΊ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π°Π΄Π³Π΅Π·ΠΈΠΈ (GO:0098609 - cell-cell adhesion), Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ DSC1, DSC3 ΠΈ DSG1. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ уровня экспрСссии Π΄Π΅ΡΠΌΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Π΄Π³Π΅Ρ€ΠΈΠ½ΠΎΠ² Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ для злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ², слизистых ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠΆΠΈ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π½Ρ‹ΠΉ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ способ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² НаБаВ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΎΠ΄Π½ΠΎΠΉ полосС гСля Π² Π΄Π²Π° Ρ€Π°Π·Π° большС Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ НаБаВ, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚Ρ‹ΠΌΠΈ осмотичСскому ΡˆΠΎΠΊΡƒ ΠΈ Ρ€Π°ΡΡ‰Π΅ΠΏΠ»Π΅Π½ΠΈΡŽ трипсином Π² растворС

    Comparative Study of Methanogenic Pathways in the Sediments of Thermokarst and Polygenetic Yamal Lakes

    No full text
    Comparative study of methanogen diversity and potential activity of different methanogenic pathways in the sediments of young thermokarst and mature polygenetic Yamal lakes was carried out. The hydrogenotrophic pathway of methanogenesis played an important role in methane formation in thermokarst lakes. The acetoclastic and methylotrophic pathways were also revealed there. In a polygenetic lake with a dissolved organic matter content closest to that of the thermokarst lakes, methanogenesis proceeded more intensively, and the relative abundance of methanogens, especially acetoclastic ones, was higher than in thermokarst lakes. The activity of methyl-reducing methanogens was also assumed there. Methanogens of the genera Methanothrix and Methanoregula, as well as representatives of the family Methanomassiliicoccaceae were identified in the sediments of all lakes. Methane-oxidizing bacteria (Methylobacter, Candidatus "Methylomirabilis") and archaea (Ca. "Methanoperedens") were also detected

    On the Possibility of Aerobic Methane Production by Pelagic Microbial Communities of the Laptev Sea

    Get PDF
    The taxonomic diversity and metabolic activity of microbial communities in the Laptev Sea water column above and outside the methane seep field were studied. The concentrations of dissolved methane in the water column at both stations were comparable until the depth of the pycnocline (25 m). At this depth, local methane maxima were recorded, with the highest concentration (116 nM CH4) found at the station outside the methane seep field. Results of the 16S rRNA gene sequencing and measurements of the rates of hydrogenotrophic methanogenesis indicated the absence of methanogenesis caused by the methanogenic archaea in the pycnocline and in other horizons of the water column. The 16S rRNA-based analysis of microbial phylogenetic diversity, as well as radiotracer analysis of the rates of primary production (PP), dark CO2 assimilation (DCA), and methane oxidation (MO), indicated the functioning of a diverse community of pelagic microorganisms capable of transforming a wide range of organic compounds under oligotrophic conditions of the Arctic basin. Hydrochemical prerequisites and possible microbial agents of aerobic methane production via demethylation of methylphosphonate and decomposition of dimethylsulfoniopropionate using dissolved organic matter synthesized in the PP, DCA, and MO processes are discussed
    corecore