99 research outputs found

    The 1895 Ljubljana earthquake: can the intensity data points discriminate which one of the nearby faults was the causative one?

    Get PDF
    The earthquake (Mw 6 from the SHEEC defined by the MDPs) that occurred in the central part of Slovenia on 14 April, 1895, affected a broad region, causing deaths, injuries, and destruction. This event was much studied but not fully explained; in particular, its causative source model is still debated. The aim of this work is to contribute to the identification of the seismogenic source of this destructive event, calculating peak ground velocity values through the use of different ground motion prediction equations (GMPEs) and computing a series of ground motion scenarios based on the result of an inversion work proposed by Juki\u107 in 2009 and on various fault models in the surroundings of Ljubljana: Vi\u10d, \u17delimlje, Borovnica, Vodice, Ortnek, Mi\u161jedolski, and Dobrepolje faults. The synthetic seismograms, at the basis of our computations, are calculated using the multi-modal summation technique and a kinematic approach for extended sources, with a maximum peak ground velocity value of 1 Hz. The qualitative and quantitative comparison of these simulations with the macroseismic intensity database allows us to discriminate between various sources and configurations. The quantitative validation of the seismic source is done using ad hoc ground motion to intensity conversion equations (GMICEs), expressly calculated for this study. This study allows us to identify the most probable causative source model of this event, contributing to the improvement of the seismotectonic knowledge of this region. The candidate fault that has the lowest values of average differences between observed and calculated intensities and chi-squared is a strike slip fault with a toward-north rupture as the Ortnek fault

    MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages

    Get PDF
    We present the most relevant results of the project MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages in its second year. Parallel and monolingual corpora have been produced for eleven low-resourced European languages by crawling large amounts of textual data from selected top-level domains of the Internet; both human and automatic evaluation show its usefulness. In addition, several large language models pretrained on MaCoCu data have been published, as well as the code used to collect and curate the data.This action has received funding from the European Union’s Connecting Europe Facility 2014-2020 - CEF Telecom, under Grant Agreement No. INEA/CEF/ICT/A2020/2278341

    MaCoCu:Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages

    Get PDF
    We introduce the project MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages, funded by the Connecting Europe Facility, which is aimed at building monolingual and parallel corpora for under-resourced European languages. The approach followed consists of crawling large amounts of textual data from selected top-level domains of the Internet, and then applying a curation and enrichment pipeline. In addition to corpora, the project will release the free/open-source web crawling and curation software used.</p

    MaCoCu:Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages

    Get PDF
    We introduce the project MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages, funded by the Connecting Europe Facility, which is aimed at building monolingual and parallel corpora for under-resourced European languages. The approach followed consists of crawling large amounts of textual data from selected top-level domains of the Internet, and then applying a curation and enrichment pipeline. In addition to corpora, the project will release the free/open-source web crawling and curation software used.</p

    Spores of Clostridium difficile Clinical Isolates Display a Diverse Germination Response to Bile Salts

    Get PDF
    Clostridium difficile spores play a pivotal role in the transmission of infectious diarrhoea, but in order to cause disease spores must complete germination and return to vegetative cell growth. While the mechanisms of spore germination are well understood in Bacillus, knowledge of C. difficile germination remains limited. Previous studies have shown that bile salts and amino acids play an important role in regulating the germination response of C. difficile spores. Taurocholate, in combination with glycine, can stimulate germination, whereas chenodeoxycholate has been shown to inhibit spore germination in a C. difficile clinical isolate. Our recent studies of C. difficile sporulation characteristics have since pointed to substantial diversity among different clinical isolates. Consequently, in this study we investigated how the germination characteristics of different C. difficile isolates vary in response to bile salts. By analysing 29 isolates, including 16 belonging to the BI/NAP1/027 type, we show that considerable diversity exists in both the rate and extent of C. difficile germination in response to rich medium containing both taurocholate and glycine. Strikingly, we also show that although a potent inhibitor of germination for some isolates, chenodeoxycholate does not inhibit the germination, or outgrowth, of all C. difficile strains. Finally, we provide evidence that components of rich media may induce the germination of C. difficile spores, even in the absence of taurocholate. Taken together, these data suggest that the mechanisms of C. difficile spore germination in response to bile salts are complex and require further study. Furthermore, we stress the importance of studying multiple isolates in the future when analysing the nutrients or chemicals that either stimulate or inhibit C. difficile spore germination

    Genetic Organisation, Mobility and Predicted Functions of Genes on Integrated, Mobile Genetic Elements in Sequenced Strains of Clostridium difficile

    Get PDF
    Background: Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn), Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7), of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.Results: CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.Conclusions: The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C. difficile with its human host
    • …
    corecore