38 research outputs found

    Detecting somatisation disorder via speech: introducing the Shenzhen Somatisation Speech Corpus

    Get PDF
    Objective Speech recognition technology is widely used as a mature technical approach in many fields. In the study of depression recognition, speech signals are commonly used due to their convenience and ease of acquisition. Though speech recognition is popular in the research field of depression recognition, it has been little studied in somatisation disorder recognition. The reason for this is the lack of a publicly accessible database of relevant speech and benchmark studies. To this end, we introduce our somatisation disorder speech database and give benchmark results. Methods By collecting speech samples of somatisation disorder patients, in cooperation with the Shenzhen University General Hospital, we introduce our somatisation disorder speech database, the Shenzhen Somatisation Speech Corpus (SSSC). Moreover, a benchmark for SSSC using classic acoustic features and a machine learning model is proposed in our work. Results To obtain a more scientific benchmark, we have compared and analysed the performance of different acoustic features, i. e., the full ComParE feature set, or only MFCCs, fundamental frequency (F0), and frequency and bandwidth of the formants (F1-F3). By comparison. the best result of our benchmark is the 76.0 % unweighted average recall achieved by a support vector machine with formants F1–F3. Conclusion The proposal of SSSC bridges a research gap in somatisation disorder, providing researchers with a publicly accessible speech database. In addition, the results of the benchmark show the scientific validity and feasibility of computer audition for speech recognition in somatization disorders

    Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals

    Get PDF
    In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Lei Gao, et al. Colloids Surf. B Biointerfaces. 2014, 117: 398), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289 nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines

    Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals

    Get PDF
    This paper was accepted for publication in the journal Colloids and Surfaces B: Biointerfaces and the definitive published version is available at http://dx.doi.org/10.1016/j.colsurfb.2016.06.016In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Lei Gao, et al. Colloids Surf. B Biointerfaces. 2014, 117: 398), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289 nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines

    Accurate Calculation of Iron Loss of High-Temperature and High-Speed Permanent Magnet Synchronous Generator under the Conditions of SVPWM Modulation

    No full text
    The high-temperature and high-speed permanent magnet synchronous generator (HTHSPMSG) is the core component ensuring the efficient and safe operation of the high-speed aircraft power supply system. At present, the existing iron loss model fails to meet the requirements for the precise calculation of the iron loss of HTHSPMSG under high-temperature and high-frequency conditions. In this paper, a 40 kW, 18,000 rpm HTHSPMSG is used to study the accurate calculation of iron loss at an ambient temperature of 350 °C. Considering the influence of high temperature and high frequency on the loss and performance of electromagnetic materials, a test platform for the loss performance of the magnetic core materials is established. Then, according to the loss performance of the electromagnetic material, the corresponding iron loss coefficient is fitted by the variable coefficient iron loss separation model. In addition, the digital twin field-circuit co-simulation method is proposed to guarantee the accuracy of the iron loss calculation. Then, the influence of carrier frequencies and modulation ratios on the iron loss characteristics of the HTHSPMSG under the conditions of SVPWM modulation is studied. Lastly, the effectiveness of the proposed method is verified by the experimental results, which provide a reference for the accurate analysis of iron loss of the same type of HTHSPMSG

    A novel ferroptosis-related gene signature for overall survival prediction in patients with gastric cancer

    No full text
    Abstract The global diagnosis rate and mortality of gastric cancer (GC) are among the highest. Ferroptosis and iron-metabolism have a profound impact on tumor development and are closely linked to cancer treatment and patient’s prognosis. In this study, we identified six PRDEGs (prognostic ferroptosis- and iron metabolism-related differentially expressed genes) using LASSO-penalized Cox regression analysis. The TCGA cohort was used to establish a prognostic risk model, which allowed us to categorize GC patients into the high- and the low-risk groups based on the median value of the risk scores. Our study demonstrated that patients in the low-risk group had a higher probability of survival compared to those in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden (TMB) and a longer 5-year survival period when compared to the high-risk group. In summary, the prognostic risk model, based on the six genes associated with ferroptosis and iron-metabolism, performs well in predicting the prognosis of GC patients

    Rapamycin-Induced Autophagy Promotes the Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells in the Temporomandibular Joint in Response to IL-1β

    No full text
    Cartilage defects in temporomandibular disorders (TMD) lead to chronic pain and seldom heal. Synovium-derived mesenchymal stem cells (SMSCs) exhibit superior chondrogenesis and have become promising seed cells for cartilage tissue engineering. However, local inflammatory conditions that affect the repair of articular cartilage by SMSCs present a challenge, and the specific mechanism through which the function remains unclear. Thus, it is important to explore the chondrogenesis of SMSCs under inflammatory conditions of TMD such that they can be used more effectively in clinical treatment. In this study, we obtained SMSCs from TMD patients with severe cartilage injuries. In response to stimulation with IL-1β, which is well known as one of the most prevalent cytokines in TMD, MMP13 expression increased, while that of SOX9, aggrecan, and collagen II decreased during chondrogenic differentiation. At the same time, IL-1β upregulated the expression of mTOR and decreased the ratio of LC3-II/LC3-I and the formation of autophagosomes. Further study revealed that rapamycin pretreatment promoted the migration of SMSCs and the expression of chondrogenesis-related markers in the presence of IL-1β by inducing autophagy. 3-Benzyl-5-((2-nitrophenoxy)methyl)-dihydrofuran-2(3H)-one (3BDO), a new activator of mTOR, inhibited autophagy and increased the expression of p-GSK3βser9 and β-catenin, simulating the effect of IL-1β stimulation. Furthermore, rapamycin reduced the expression of mTOR, whereas the promotion of LC3-II/LC3-I was blocked by the GSK3β inhibitor TWS119. Taken together, these results indicate that rapamycin enhances the chondrogenesis of SMSCs by inducing autophagy, and GSK3β may be an important regulator in the process of rapamycin-induced autophagy. Thus, inducing autophagy may be a useful approach in the chondrogenic differentiation of SMSCs in the inflammatory microenvironment and may represent a novel TMD treatment
    corecore