37 research outputs found

    Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis

    Get PDF
    A prominent clinical symptom in multiple sclerosis (MS), a progressive disorder of the central nervous system (CNS) due to heightened neuro-inflammation, is learning and memory dysfunction. Here, we investigated the effects of a ketogenic diet (KD) on memory impairment and CNS-inflammation in a murine model of experimental autoimmune encephalomyelitis (EAE), using electrophysiological, behavioral, biochemical and in vivo imaging approaches. Behavioral spatial learning deficits were associated with motor disability in EAE mice, and were observed concurrently with brain inflammation. The KD improved motor disability in the EAE model, as well as CA1 hippocampal synaptic plasticity (long-term potentiation) and spatial learning and memory (assessed with the Morris Water Maze). Moreover, hippocampal atrophy and periventricular lesions in EAE mice were reversed in KD-treated EAE mice. Finally, we found that the increased expression of inflammatory cytokines and chemokines, as well as the production of reactive oxygen species (ROS), in our EAE model were both suppressed by the KD. Collectively, our findings indicate that brain inflammation in EAE mice is associated with impaired spatial learning and memory function, and that KD treatment can exert protective effects, likely via attenuation of the robust immune response and increased oxidative stress seen in these animals

    Efficacy of Chuanxiong Ding Tong Herbal Formula Granule in the Treatment and Prophylactic of Migraine Patients: A Randomized, Double-Blind, Multicenter, Placebo-Controlled Trial

    Get PDF
    Objective. To evaluate the efficacy of traditional Chinese herbal ChuanXiong Ding Tong herbal formula granule (CXDT-HFG) for migraine patients with “the Syndrome of Liver Wind and Blood Stasis.” Methods. 150 migraine patients were recruited and assigned randomly in a double-blind, placebo-controlled study to receive CXDT-HFG (n=99) plus necessary analgesics, or placebo (n=51) plus necessary analgesics for 16 weeks (12 weeks’ intervention and 4 weeks’ follow up). Outcome measures included migraine days, frequency of migraine attacks, analgesics consumption for acute treatment, and the proportion of responders as well as the visual analogue scale (VAS) scores and intensity for pain. Results. Compared with the placebo group, the CXDT-HFG group showed significant reduction in migraine days and attacks frequency at week 12 and follow-up period (P0.05). Conclusion. CXDT-HFG was more effective than placebo in decreasing days of migraine attacks, frequency, VAS scores, and relieving pain intensity for migraine patients

    Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology

    Get PDF
    Natural killer (NK) cells of the innate immune system can profoundly impact the development of adaptive immune responses. Inflammatory and autoimmune responses in anatomical locations such as the central nervous system (CNS) differ substantially from those found in peripheral organs. We show in a mouse model of multiple sclerosis that NK cell enrichment results in disease amelioration, whereas selective blockade of NK cell homing to the CNS results in disease exacerbation. Importantly, the effects of NK cells on CNS pathology were dependent on the activity of CNS-resident, but not peripheral, NK cells. This activity of CNS-resident NK cells involved interactions with microglia and suppression of myelin-reactive Th17 cells. Our studies suggest an organ-specific activity of NK cells on the magnitude of CNS inflammation, providing potential new targets for therapeutic intervention

    Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells

    No full text
    Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC

    Liver Kinase B1/AMP-Activated Protein Kinase Pathway Activation Attenuated the Progression of Endotoxemia in the Diabetic Mice

    No full text
    Background/Aims: Sepsis is a common disease that continues to increase in prevalence worldwide, and diabetes mellitus may make the situation worse. This study was designed to determine the role of Liver Kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in diabetic mice complicated with systemic endotoxemia. Methods: The effects of LKB1/AMPK signaling pathway activation on endotoxemia were investigated in streptozotocin induced diabetic mice (STZ-mice) and db/db diabetic mice. Primary peritoneal macrophages and human umbilical vein endothelial cells (HUVECs) monolayers were simultaneously stimulated by both high glucose and LPS and used as a model to investigate the potential molecular mechanisms in vitro. Results: After treatment with LPS, high glucose or both LPS and high glucose, phosphor-AMPK expression was decreased, and moreover, AMPK activation by metformin treatment alleviated the decrease in phosphor-AMPK expression in HUVECs and macrophages as well as in lung tissue. Furthermore, both LPS and high glucose co-treatment decreased LKB1 and phosphor-AMPK expression via enhanced oxidative stress response, and importantly, LKB1 overexpression mediated by adenovirus inhibited the decrease in phosphor-AMPK expression in macrophages and HUVECs. AMPK activation by metformin administration improved the survival of STZ-induced diabetic mice and db/db diabetic mice, which was associated with reduced lung endothelial hyperpermeability and systemic inflammatory response. Furthermore, the permeability of HUVECs monolayers induced by both high glucose and LPS stimulation was also alleviated by AMPK activation, which was partly via suppression of VE-cadherin phosphorylation. Conclusion: These data demonstrated that LKB1/AMPK signaling pathway activation improved the survival of diabetic mice complicated with endotoxemia. Thus, LKB1/AMPK signaling pathway may serve as a potentially useful therapeutic target for severe infection in diabetic patients

    Wu-Mei-Wan Reduces Insulin Resistance via Inhibition of NLRP3 Inflammasome Activation in HepG2 Cells

    No full text
    Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Results showed that palmitate could reduce the glucose consumption rate in HepG2 cells and impair insulin signaling related to phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), thereby regulating the downstream signaling pathways. However, medicated serum of WMW restored impaired insulin signaling, upregulated the expression of phospho-IR (pIR), phosphatidylinositol 3-kinase p85 subunit, phosphoprotein kinase B, and glucose transporter 4, and decreased IRS serine phosphorylation. In addition, it decreased the expression of interleukin-1ÎČ and tumor necrosis factor-α, which are the key proinflammatory cytokines involved in insulin resistance; besides, it reduced the expression of NLRP3 inflammasome. These results suggested that WMW could alleviate palmitate-induced insulin resistance in HepG2 cells via inhibition of NLRP3 inflammasome and reduction of proinflammatory cytokine production

    Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    No full text
    Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF). However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS) to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo
    corecore