6 research outputs found

    Hyperuricemia and Cardiovascular Disease.

    Get PDF
    Uric acid (UA), the metabolic mediator of gout and urate renal stones, is associated with increased cardiovascular risk burden. Hyperuricemia is a common metabolic disorder, and interaction among UA and cardiovascular diseases has been clearly described. Several illnesses, including hypertension, myocardial infarction, metabolic syndrome, and heart failure, are related to increases in UA levels. In this article, we discuss the pathophysiology of hyperuricemia and describe the biologic plausibility of this metabolite's participation in the pathogenesis of cardiovascular illness. We conclude by discussing the implications of lowering plasma UA concentrations to reduce the risk of cardiovascular events, including myocardial infarction, stroke, heart failure, and cardiovascular death

    Gut macrobiotic and its metabolic pathways modulate cardiovascular disease

    Get PDF
    Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host’s metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies

    pyHIVE, a health-related image visualization and engineering system using Python

    No full text
    Abstract Background Imaging is one of the major biomedical technologies to investigate the status of a living object. But the biomedical image based data mining problem requires extensive knowledge across multiple disciplinaries, e.g. biology, mathematics and computer science, etc. Results pyHIVE (a Health-related Image Visualization and Engineering system using Python) was implemented as an image processing system, providing five widely used image feature engineering algorithms. A standard binary classification pipeline was also provided to help researchers build data models immediately after the data is collected. pyHIVE may calculate five widely-used image feature engineering algorithms efficiently using multiple computing cores, and also featured the modules of Principal Component Analysis (PCA) based preprocessing and normalization. Conclusions The demonstrative example shows that the image features generated by pyHIVE achieved very good classification performances based on the gastrointestinal endoscopic images. This system pyHIVE and the demonstrative example are freely available and maintained at http://www.healthinformaticslab.org/supp/resources.php

    Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2–Smad1/5/8 signaling pathway

    No full text
    Abstract Background Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine. Here, we demonstrate that MSC-CM inhibits beta-glycerophosphate (β-GP)-induced vascular calcification through blockade of the bone morphogenetic protein-2 (BMP2)–Smad1/5/8 signaling pathway. Methods VSMC calcification was induced by β-GP followed by treatment with MSC-CM. Mineral deposition was assessed by Alizarin Red S staining. Intracellular calcium content was determined colorimetrically by the o-cresolphthalein complexone method and alkaline phosphatase (ALP) activity was measured by the para-nitrophenyl phosphate method. Expression of BMP2, BMPR1A, BMPR1B, BMPR2, msh homeobox 2 (Msx2), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC), representative osteoblastic markers, was assessed using real-time polymerase chain reaction analysis while the protein expression of BMP2, Runx2, and phosphorylated Smad1/5/8 was detected by western blot analysis. Results Our data demonstrated that MSC-CM inhibits osteoblastic differentiation and mineralization of VSMCs as evidenced by decreased calcium content, ALP activity, and decreased expression of BMP-2, Runx2, Msx2, and OC. MSC-CM suppressed the expression of phosphorylated Smad1/5/8 and the β-GP-induced translocation from the cytoplasm to the nucleus. Further study demonstrated that human recombinant BMP-2 overcame the suppression of VSMC calcification by MSC-CM. Conclusion MSC-CM may act as a novel therapy for VSMC calcification by mediating the BMP2–Smad1/5/8 signaling pathwa
    corecore