147 research outputs found

    Experimental Quantum Imaging exploiting multi-mode spatial correlation of twin beams

    Full text link
    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is addressed to overcome limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed scheme exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of the weak absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal to noise ratio with respect to classical imaging methods and, therefore, its interest for future practical applications

    Quantum Enhanced Imaging of Non-Uniform Refractive Profiles

    Get PDF
    In this work quantum metrology techniques are applied to the imaging of objects with a non-uniform refractive spatial profile. A sensible improvement on the classical accuracy is shown to be found when the "Twin Beam State" (TWB) is used. In particular exploiting the multimode spatial correlation, naturally produced in the Parametric Down Conversion (PDC) process, allows a 2D reconstruction of complex spatial profiles, thus enabling an enhanced imaging. The idea is to use one of the spatially multimode beam to probe the sample and the other as a reference to reduce the noise. A similar model can be also used to describe wave front distortion measurements. The model is meant to be followed by a first experimental demonstration of such enhanced measurement scheme

    Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams

    Get PDF
    Loss measurements are at the base of spectroscopy and imaging, thus perme- ating all the branches of science, from chemistry and biology to physics and material science. However, quantum mechanics laws set the ultimate limit to the sensitivity, constrained by the probe mean energy. This can be the main source of uncertainty, for example when dealing with delicate system such as biological samples or photosensitive chemicals. It turns out that ordinary (clas- sical) probe beams, namely with Poissonian photon number distribution, are fundamentally inadequate to measure small losses with the highest sensitivity. Conversely, we demonstrate that a quantum-correlated pair of beams, known as twin-beam state, allows reaching the ultimate sensitivity for all energy regimes (even less than one photon per mode) with the simplest measurement strategy. One beam of the pair addresses the sample, while the second one is used as a reference to compensate both for classical drifts and for uctuation at the most fundamental quantum level. This scheme is also absolute and accurate, since it self-compensates for unavoidable instability of the sources and detectors, which could otherwise lead to strongly biased results. Moreover, we report the best sensitivity per photon ever achieved in loss estimation experiments

    Quantum enhanced imaging of nonuniform refractive profiles

    Get PDF
    In this work, quantum metrology techniques are applied to the imaging of objects with a nonuniform refractive spatial profile. A sensible improvement on the classical accuracy is shown to be found when the "Twin Beam (TWB) State" is used. In particular, exploiting the multimode spatial correlation, naturally produced in the Parametric Down Conversion (PDC) process, allows a 2D reconstruction of complex spatial profiles, thus enabling an enhanced imaging. The idea is to use one of the spatially multimode beams to probe the sample and the other as a reference to reduce the noise. A similar model can also be used to describe wave front distortion measurements. The model is meant to be followed by a first experimental demonstration of such enhanced measurement scheme

    Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

    Full text link
    We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest

    Quantum differential ghost microscopy

    Full text link
    Quantum correlations become formidable tools for beating classical capacities of measurement. Preserving these advantages in practical systems, where experimental imperfections are unavoidable, is a challenge of the utmost importance. Here we propose and realize a quantum ghost imaging protocol able to compensate for the detrimental effect of detection noise and losses. This represents an important improvement as quantum correlations allow low brightness imaging, desirable for reducing the absorption dose. In particular, we develop a comprehensive model starting from a ghost imaging scheme elaborated for bright thermal light, known as differential ghost imaging and particularly suitable in the relevant case of faint or sparse objects. We perform the experiment using SPDC light in microscopic configuration. The image is reconstructed exploiting non-classical intensity correlation rather than photon pairs detection coincidences. On one side we validate the theoretical model and on the other we show the applicability of this technique by reconstructing a biological object with 5 micrometers resolution

    Single-phase and correlated-phase estimation with multiphoton annihilated squeezed vacuum states: An energy-balancing scenario

    Get PDF
    partially_open3In recent years, several works have demonstrated the advantage of photon-subtracted Gaussian states for various quantum optics and information protocols. In most of these works, the relation between the advantages and the usual increasing energy of the quantum state related to photon subtraction was not clearly investigated. In this paper, we study the performance of an interferometer injected with multiphoton-annihilated squeezed vacuum states mixed with coherent states for both single- and correlated-phase estimations. For single-phase estimation, although the use of multiphoton-annihilated squeezed vacuum states at low mean photons per mode provides an advantage compared to classical strategy, when the total input energy is held fixed, the advantage due to photon subtraction is completely lost. However, for the correlated case in the analogous scenario, some advantage appears to come from both the energy rise and improvement in photon statistics. In particular quantum enhanced sensitivity with photon-subtracted states appears more robust to losses, showing an advantage of about 30% with respect to the squeezed vacuum state in the case of a realistic value of the detection efficiency.openN. Samantaray; I. Ruo Berchera; I. P. DegiovanniSamantaray, N.; Ruo Berchera, I.; Degiovanni, I. P
    • …
    corecore